
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

GPU Accelerated Clustering Techniques

Komal D. Nistane
1
, Shailendra W. Shende

2

1Department of Information Technology, Yeshwantrao Chavan College of Engineering, Nagpur, India

2Professor, Department of Information Technology, Yeshwantrao Chavan College of Engineering, Nagpur, India

Abstract: Clustering is the data mining technique which is used to place the data elements into related groups. With the development

of technologies the size of the data is increasing rapidly. Graphics Processing Units (GPU) are the high performance parallel

processors. GPU has the ability to execute different tasks independently however at the same time with the help of every single

processor. This computational feature of GPU can be used to increase the speedup of the data mining algorithms. This paper shows the

comparative study of the k-means and k-medoid clustering on GPU.

Keywords: k-means clustering, k-medoid clustering, graphics processing unit (GPU), CUDA

1. Introduction

The process of grouping a set of physical or abstract objects

into classes of similar objects is known as clustering.

Clustering analysis has many applications for data processing

[7]. In machine learning, cluster analysis is considered as the

unsupervised learning. k-means and k-medoid are commonly

used partitioning algorithms and are applied in pattern

recognition, data analysis, information retrieval, market

analysis, image processing and feature learning [8][9].

In order to have faster execution of data miming algorithms

parallel computation is useful to reduce overall computation

time. Graphics processors (GPUs) have developed very

rapidly in recent years. At present time, many computers are

assembled with programmable graphics processing units

(GPUs). GPUs have powerful Single Instruction Multiple

Data (SIMD) processors that can support parallel data

processing and high-accuracy computation. CUDA device

has Multithreaded architecture which runs many threads

parallel and makes the optimum use of available computation

power of GPU.

The paper is organized as follows. Section 2 presents the

related works of GPGPU. Section 3 describes GPU-based k-

means and k-medoid algorithms. The experimental results of

our approach are reported in Section 4. Finally, conclusions

are drawn in Section 5.

2. Related work

BAI Hong-tao[2] presented the approach for the

parallelization of the k-means clustering in which the data

object assignment and k centroid recalculations are done on

the GPU in parallel manner.

In [1], the algorithm is executed in master slave model.

Master thread prepares the data points and uploads them on

GPU. In labeling stage the nearest centroid for each data set

is calculated. The index of these centroids are stored and

used by the centroid update stage on CPU. Hence each thread

works on each data point and calculates the nearest centroid.

The task of each thread is to calculate and iterate over data

points belong to the thread according to partitioning schema

and performs the actual labeling for the current data point.

Kaiyong Zhao [4] designed two different GPU-based

algorithms: one for low-dimensional data sets and another

one for high-dimensional data sets. One data point is

dispatched to one thread and then the thread is responsible

for the calculation of the distance from one data point to all

the centroids, and maintains the minimum distance and the

corresponding centroid. As n data points has been delivered

to n threads working in parallel decreases the time

consumption significantly. The result of the first step, the

data points belonging to the same centroid constitute one

cluster. The new centroids are calculated by taking the mean

of all the data points in each cluster. The final centroids are

calculated on the CPU. When the size of dataset grows larger

than a single GPU’s on-board memory, a divide-and-merge

method is adopted as follows: load the dataset group by

group, then compute the temporary results and merge them

into the finally results.

 D Roberts [5] has given the CUDA implementation of k-

medoid clustering. According to the auther the CUDA

implementation of this algorithm is nearly similar to the

sequential algorithm except the code is parallelised with the

help of CUDA cores.

3. Graphics Processing Unit

GPU is a set of multiprocessors executing concurrent threads

in parallel. The threads are grouped in thread blocks. Grid is

a collection of blocks. Thread and blocks are given an id

according to its position in block and grid respectively. The

thread and the block id can access specific memory during

run time. Each thread on the GPU executes the same

procedure known as a kernel.

Each multiprocessor has on-chip memory which include a set

of local 32-bit registers per processor, Each processor shares

parallel data cache or shared memory and is where the shared

memory space resides. A read-only region of device memory

i.e. a read-only constant cache is shared by all scalar

Paper ID: SUB153117 988

file:///D:\IJSR%20Website\www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

processor cores and speeds up reads from the constant

memory space.

Figure 1: GPU based CUDA architecture

All scalar processor cores shares a read only texture cache

and speeds up reads from the texture memory space, which is

a read-only region of device memory; each multiprocessor

accesses the texture cache via a texture unit that implements

the various addressing modes and data filtering [10].

4. GPU Based Clustering Algorithm

4.1 GPU-based k-means Clustering Algorithm

k-mean is a clustering algorithm arranges the data points into

k clusters having the maximum similarity function. The

algorithm assigns each data point to the cluster whose center

is nearest. The center is the mean of all the data points in the

cluster.

The k-means algorithm does not yield the same result after

each run, as the resulting cluster depends upon the initial

random assignments. The algorithm minimizes the intra-

cluster distance but does not provide the result with the

global minimum value [6].

The parallel k-means algorithm is implemented as follows:

1) Enter the k value

2) Randomly select the k clusters from dataset X

3) Copy all the dataset on GPU

4) Repeat

 4.1) calculate the distance of each data item

 for all xi ε Xthread do

 li<- arg min D(cj,xi)

 End for

 4.2) for all xi ε X do

 Add xi to appropriate cluster (ci)

 Calculate the no of elements in ci

 End for

 4.3) for all cj ε C do

 End for

 4.4) until same clusters are found

5) Copy the results on CPU.

In GPU, processors are called threads and a master-slave

model is used. Thread 0 worked as the master thread while

all other threads are slaves.

The master thread initializes the centroids. Next X is

partitioned into subsets Xi. All threads execute the labeling

stage for their partition of X. The label of each data point Xi

is stored in a component li of an n-dimensional vector.

Depending on the distance calculated the xi is assigned to the

appropriate clusters. A k dimensional vector m is updated in

every iteration where each component mj holds the number

of data points assigned to cluster Cj. Next another loop over

all centroids is performed scaling each centroid cj by 1/mj

giving the final centroids. Convergence is also determined by

the master thread by checking whether the last labeling stage

introduced any changes in the clustering. Slave threads are

signaled to stop execution by the master thread as soon as

convergence is achieved [1].

4.2 GPU-based k-medoid clustering algorithm

k-medoid is representative object-based technique.

Partitioning Around Method (PAM) was one of the first k-

medoid algorithm. It attempts to determine k partitions for n

objects. After an initial random selection of k medoids, the

algorithm tries to make a better choice of medoid repeatedly.

Instead of taking the mean value of the data object in a

cluster as a reference point, a medoid is used which is most

centrally located in a cluster [11].

k-medoid algorithm is as follows:

1) Enter the number of clusters

2) Copy the data and the cost calculator on GPU

3) Calculate the cost for each medoid on GPU

4) Select the non-medoids randomly and calculate the new

cost for the non medoids

5) Calculate the membership value on GPU

6) Copy the membership values on host

For each event in single cluster each thread block calculates

the membership value.

5. Experimental Results

In this chapter the results are taken on 2.0 Ghz four core Intel

Nehalem, 16 GB RAM with NVIDIA quadro FX 380LP

graphics processor. The results are taken on GROCERY

attribute with data transfer time and without data transfer

time using k-means and k-medoid algorithm. WITHOUT DT

means speedup taken without considering data transfer time

and WITH DT means speed taken with considering data

transfer time.

Paper ID: SUB153117 989

file:///D:\IJSR%20Website\www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 2: Speedup of k-means algorithm with and without

data transfer time

The graph shown in figure 2 is the graph of speedup for k-

means clustering algorithm with data transfer time and

without data transfer time. The levels on the X-axis indicates

that the no of clusters. On the Y-axis there is a speedup

factor. The blue bar indicates the gpu speedup without data

transfer on gpu and the magenta bar indicates the speedup

with data transfer. So here we can see that as the levels are

increased the speedup also increases.

Figure 3: Speedup of k-medoid algorithm with and without

data transfer time

The graph shown in figure 3 is the graph of speedup for k-

medoid clustering algorithm with data transfer time and

without data transfer time. The levels on the X-axis indicates

that the no of clusters. On the Y-axis there is a speedup

factor. The blue bar indicates the gpu speedup without data

transfer on gpu and the magenta bar indicates the speedup

with data transfer. So here we can see that as the levels are

increased the speedup also increases.

The graph shown in figure 4 is the graph of speedup for k-

means and k-medoid clustering algorithm without data

transfer time. The levels on the X-axis indicates that the no of

clusters. On the Y-axis there is a speedup factor. The blue

bar indicates the gpu speedup for k-means clustering

algorithm on gpu and the magenta bar indicates the speedup

for k-medoid clustering algorithm. More speedup is achieved

for k-means clustering as compared to k-means clustering.

Figure 4: Speedup of k-means and k-medoid algorithm

without data transfer time

6. Conclusion

In this project, the serial and parallel performance of k-means

and k-medoid clustering algorithm is compared with respect

to time. From the investigation and results we conclude that

Parallel results are better than serial results with respect to

time. Parallelizing has increased the performance. Speedup

factor for k-means clustering is 1.55 for k=10 .Speedup

factor for k-medoid clustering is 0.91 for k=10.

References

[1] M. Zechner and M. Granitzer, “Accelerating K- Means

on the Graphics Processor via CUDA,” Proc. First Int’l

Conf. Intensive Applications and Services (INTENSIVE

’09), pp. 7-15 , 2009, doi:

10.1109/INTENSIVE.2009.19)

[2] BAI Hong-tao, HE Li-li, OUYANG Dan-tong , LI Zhan-

shan ,LI He “K-Means on commodity GPUs with

CUDA” 2009 World Congress on Computer Science and

Information Engineering.

[3] Reza Farivar, Daniel Rebolledo, Ellick Chan, Roy

Campbell, “A Parallel Implementation of K-Means

Clustering on GPUs” Proceedings of 2008 International

Conference on Parallel and Distributed Processing

Techniques and Applications (PDPTA 08)

[4] Kaiyong Zhao ; Xiaowen Chu ; Jiming Liu,” Speeding

up K-Means Algorithm by GPUs” , Computer and

Information Technology (CIT), 2010 IEEE 10th

International Conference on June 29 2010-July 1 2010

[5] Roberts, Douglas. "k-medoids: CUDA Implementation."

(2009).

[6] https://en.wikipedia.org/wiki/Cluster_analysis

[7] Bill Andreopoulos, Aijun An, Xiaogang Wang, and

Michael Schroeder. “A roadmap of clustering

algorithms: finding a match for a biomedical application.

Brief Bioinform”, pages bbn058+, February 2009.

[8] X.J. Wang, “K-means clustering for multispectral images

using floating-point divide”. Proceedings 2007 IEEE

Symposium on Field-Program Custom Computing

Machines (FCCM 2007), pp.151-59.

[9] H. Zhou, Y.H. Liu, “Accurate integration of multi-view

range images using k-means clustering”. Pattern

Recognition 2008, 41(1), pp.152-75.

Paper ID: SUB153117 990

file:///D:\IJSR%20Website\www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[10] Nvidia “NVIDIA CUDA Programming Guide” version

2.1 2008.

[11] Dr Batra, Aishwarya. "Analysis and Approach: K-Means

and K-Medoids Data Mining Algorithms." 5th IEEE

International Conference on Advanced Computing &

Communication Technologies [ICACCT‐2011] ISBN.

[12] Nvidia “NVIDIA CUDA Getting Started Guide for

Microsoft Windows” version 5.0 2012.

[13] J. Han, M. Kamber. Data Mining: concepts and

techniques, Beijing: China Machine Press, 2006.

Paper ID: SUB153117 991

file:///D:\IJSR%20Website\www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

