
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Review on Cost Estimation Prediction Using ANN

Anshul
1
, Nitin Jain

2

1M. Tech (CSE), Hindu College of Engineering, Sonipat, Haryana, India.

2Assistant Professor (CSE), Hindu College of Engineering, Sonipat, Haryana

Abstract: Cost prediction is the process of estimating the effort required to develop a software system. Cost prediction is an important

part of software development. Now days, software is the most expensive component of computer system. This paper provides a general

overview of software cost estimation methods including the recent advances in the respective field. Algorithmic models such as SLOC,

function point size estimation and COCOM model .Non-Algorithmic models such as analogy and expert judgment. Machine learning

methods such as artificial neural networks and their techniques and fuzzy logic. This paper highlights the cost estimation models that

have been proposed and used successfully and their comparison and applications.

Keywords: Algorithmic models, Cost Estimation Prediction, SLOC, Non-Algorithmic models, Machine learning models .

1. Introduction

Cost prediction is the process of estimating the effort

required to develop a software system. Several indicators

should be considered to estimate the software cost and

effort. One of the most important indicators which should be

noticed is the size of the project. The estimation of effort and

cost depends on the accurate prediction of the size.

Generally, the effort and cost estimations are difficult in the

software projects because software projects are often not

unique and there is no previous experience about them.

Therefore, prediction becomes complicated. Accurate cost

prediction is important because:

 It can help to prioritize and classify the development

projects with respect to an overall business plan.

 It can be used to determine the kind of resources

required and how well these resources will be used.

 It can be used to determine the impact of changes and

support re-planning of project.

 Projects can be simple to manage and control when

resources matches to the real needs.

 Customers expects the projected costs in the same line

with the actual development costs.

Software cost prediction involves determination of effort,

time and cost. Effort is measured in person- months of the

programmers, analysts etc..This effort estimate can be

converted into cost by multiplying the estimated effort

required by the average salary per unit time of the staff

involved. Accurate estimation of software development

effort has major implications for the management of

software growth. If management‟s estimate is very less, then

the software development team will be under considerable

pressure to complete the product on time, and hence the

resulting software may not be tested and fully functional .

Thus, the product may contain the remaining errors that need

to be corrected during a later part of the software life cycle,

in which the cost of corrective maintenance is more. On the

other hand, if a manager‟s estimate is greater, then too many

resources will be allowed to the project. ANN is one of the

techniques which involve a series of steps for the

computation of maintainability effort. As the traditional

computers are not excellent to interact because of the

immense parallelism, noised data, failure to adapt to certain

circumstance, and fault tolerant, so ANN provides a better

option for handling software quality.

2. Estimation Technique

There are many techniques or methods for the software cost

estimation prediction. Cost estimation is the process of

estimating the effort required to develop a software system.

Cost prediction is an important part of software development.
Cost estimation techniques are classified into various

categories, but the information industry wants a simple and

accurate estimation method for their work.

Cost Estimation Techniques three main categories:

1. Algorithmic,

2. Non-algorithmic

3. Machine Learning Methods.

1. Algorithmic Model

Algorithmic models (AM) “calibrate” prespecified formulas

for estimating development effort from historical data.

Mainly algorithmic models are statically or formula based

models which takes historical cost information and which is

based on the size of the software.

Some methods are:

a) Source Line of Code

SLOC is an estimation parameter that illustrates the number

of all commands and data definition but it does not include

instructions such as comments, blanks, and continuation

lines. This parameter is usually used as an analogy based on

an approach for the estimation.

After computing the SLOC for software, it is compared with

other projects whose SLOC has been computed before, and

the project size is estimated. SLOC is used to easily measure

the size of the project. After finishing the project, all

estimations made are compared with the actual ones.

Thousand Lines of Code (KSLOC) are used for estimation

in large scale. Using this metric is common in many

estimation methods. SLOC Measuring seems very difficult

at the early stages of the project because of the lack of

information about requirements.

Paper ID: SUB153112 1060

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Since SLOC is computed based on the instructions of

languages, and comparing the size of software which uses

different language is very difficult. But, SLOC is the basis of

the estimation models in many complicated software

estimation methods. SLOC is governed by the equation 1.1

S =
S
L+

4S
M +

S
H (1.1)

 6

Where,

SL as the lowest, SH as the highest and SM as the most

probable size

b) Function Point Size Estimates

At first, Albrecht (1983) presented Function Point metric to

measure the functionality of project. He believes function

points offer several significant advantages over SLOC

counts of size measurement.

In this method estimation is done by following indicators:

• User Inputs

• User Outputs

• Logic files

• Inquiries

• Interfaces

A Complexity Degree which is between 1 and 3 is defined

for each above indicator. 1, 2 and 3 represent simple,

medium and complex degree respectively. Also, it is

essential to define a weight for each indicator which can be

between 3 and 15.

Steps in counting function points:

i. Counting the user functions. The raw function counts are

arrived at by considering a linear combination of five

basic software components: external inputs, external

outputs, external inquiries, internal logic files, and

external interfaces[2], each at one of three complexity

stages: simple, average or complex .The number of

function counts (FC) is the sum of these numbers which

is weighted according to the complexity level .

ii. Adjusting for environmental processing complexity. The

final function points is calculated by multiplying FC by

an adjustment factor that is determined by considering 14

aspects of processing complexity. This adjustment factor

allows the FC to be modified by at most 35% or -35%.

c. COCOMO Model

Constructive Cost Model (COCOMO) is widely used

algorithmic software cost model [3] [4]. It include following

three models:

Model 1 (Basic COCOMO Model):- The basic COCOMO

model computes software development effort and cost as a

function of program size expressed in estimated lines of

code (LOC) [5] [6].

The steps in this Model are:-

a. Obtain an initial estimate of the development

effort from the estimate of thousands of delivered

lines of source code (KLOC).
b. Determine a set of 15 multiple factors from different

attributes of the project.
c. Adjust the effort estimate by multiplying the initial

estimate with all the multiplying factors.
The initial estimate (also called nominal estimate) is

determined by an equation of the form used in the static

single variable models, where size is calculate in KLOC.

The initial effort is calculate in person-month using the

equation [7] of the type
EFFORT = a* (KLOC)

b
 (2)

Where, the value of constants a and b depends on the project

type.

Model 2 (Intermediate COCOMO Model):- Intermediate

COCOMO Model computes software development effort as

a function of program size and set of —cost drivers that

include subjective assessment of the products, hardware,

personnel and project attributes.

Product attributes
a. Required software reliability
b. Size of application data base
c. Complexity of the product

Hardware attributes
a. Run-time performance constraints
b. Memory constraints
c. Volatility of the virtual machine environment
d. Required turnaround time

Personnel attributes
a. Analyst capability
b. Software engineer capability
c. Applications experience
d. Virtual machine experience
e. Programming language experience

Project attributes
a. Use of software tools
b. Application of software engineering methods
c. Required development schedule each of the 15 attributes

is rated on a 6 point scale that ranges from very low to

extra high . Based on the evaluation, an effort multiplier

is determined from tables published by Boehm, and the

result of all effort multipliers results is an effort

adjustment factor (EAF).Usually, EAF values ranges

from 0.9 to 1.4 [4].

The intermediate COCOMO model take the form:
EFFORT = a* (KLOC)

b
 *EAF (3)

Where, effort is calculated in person-months and KLOC is

the estimated as number of delivered lines of code for the

project.

Model 3 (Detailed COCOMO Model): The Model 3

incorporates all characteristics of the intermediate version

with an assessment of the cost driver„s impact on each step

(analysis, design, etc) of the software engineering process.

2. Non Algorithmic Model

Paper ID: SUB153112 1061

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Contrary to the Algorithmic methods, methods of this

faction are based on analytical comparisons and inferences.

For using the Non Algorithmic models some information

about the previous projects which are similar the under

estimate project is required and usually estimation process in

these methods is done according to the analysis of the

previous datasets.

Some methods are:

a) Analogy

Estimating by analogy means comparing the proposed

project to previously completed similar project where the

project development information id identified. Actual data

from the previously complete projects are taken to estimate

the planned project. This method is used either at system-

level or at the component-level. Estimating by analogy is

relatively simple and straightforward. Actually in some

respects, it is an organized form of expert judgment since

experts often search for analogous situations so as to inform

their opinion.

The estimating steps of this method are:

i. Find out the characteristics of the proposed project.

ii. Select the most similar complete projects whose

characteristics are stored in the historical based data.

The process concerned to predict software price estimates can

be broken down into the following steps according to

 Selection of analogies
 Assessing difference and similarities
 Assessment of analogy quality
 Consideration of any special cases
 Creating the estimate

b) Expert Judgment

Expert judgment techniques involve consulting with

software cost estimation expert or a group of the experts to

use their experience and understanding of the proposed

project to arrive at an estimate of its cost. Generally

speaking, a group consent technique, Delphi technique is the

best technique to be used. The strength and weakness are

complementary to the strengths and weaknesses of

algorithmic method. To provide a sufficiently broad

communication bandwidth for the experts to exchange the

volume of information necessary to calibrate their estimates

with those of the other experts, a wideband Delphi technique

is introduced over standard Delphi technique.

The estimating steps using this method:
i. Coordinators present each expert with a specification and

an estimation form.

ii. Coordinator calls a group meeting in which the experts

discuss estimation issues with the coordinator and each

other.

iii. Experts fill out forms anonymously.

iv. Coordinator prepares and distributes a summary of the

estimation on an iteration form.

v. Coordinator calls a group meeting, specially focus on

having the experts discuss points where their estimates

varied widely.

vi. Experts fill out forms, again secretly, and steps 4 and 6

are repeated for as many rounds as appropriate.
The wideband Delphi Technique has subsequently been used in

a number of studies and cost estimation activities. It has been

highly efficacious in linking the free discuss advantages of the

group meeting technique.

3. Machine learning Models

Most techniques about software cost estimation use

statistical approach, which are not able to provide reason and

strong results. Machine learning approaches could be

appropriate at this filed because they can increase the

accuracy of estimation by training rules of estimation and

repeating the run cycles.

Some models are:

a) Artificial Neural Networks

ANNs posses‟ large number of highly interconnected

processing elements called neurons, which generally operate

in parallel and are configured in regular architectures. Each

neuron connected with the other by a communication link

and each connection link is associated with weights which

contain information about the input signal. The neuron

calculates the weighted sum of its inputs and generates an

output if the sum exceeds a certain threshold. The process

continues until one or more outputs are generated. These are

estimation models that can be “trained” using historical data

to produce ever better results by automatically adjusting

their algorithmic parameter values to reduce the delta

between known actual and model predictions.[8][9].

Figure I: Artificial Neural Network

It include following techniques:

i) Back Propagation Algorithm

This is the most widely used algorithm for supervised

learning with multilayered feed forward networks. Once the

network has been constructed, the model must be trained by

giving it with a set of historical project information. Inputs

and the related known actual values for project schedule.

Then the model repeats on its training algorithm,

automatically adjust the factors of its estimation functions

until the model estimate and the actual values are within

some pre-specified value. [10][11].

ii) Resilient Back Propagation

RPROP is used for performing supervised batch learning for

multilayered feed forward Networks. The basic principle of

RPROP is to eliminate the harmful influence of the size of

the partial derivative on the weight step. RPROP changes the

size of weight step ,directly by providing the concept of

Paper ID: SUB153112 1062

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

resilient update values. So, the adaptation effort (AF) is not

deteriorated by un-foreseeable gradient behavior [12].

iii) Gradient Descent Learning

This algorithm tries to minimize the error E between actual

and desired output by adjusting the synaptic weights

between the neurons by an amount proportional to the first

derivative of the mean squared error with respect to the

synaptic weight. So, if Wij is the weight update of the link

connecting the i
th

 and j
th

 neuron of the two neighboring

layers, then Wij is defined as

 Wij = n ∂E/∂Wij

Where, n is the learning rate parameter and ∂E/∂Wij is the

error gradient with reference to the weight Wij.

iv) Delta Rule

Delta rule is the special case of Gradient Descent Learning.

Delta rule is also referred as the Widrow-Hoff Learning

Rule. According to this learning rule the mechanism for

weight modification during the training process acts in an

appropriate way in order to minimize the difference between

the desired output and the actual output produced by the

processing elements. It is also called the Least Mean Square

Learning Rule, because it is used to minimize the mean

squared error of that difference.

v) Cascade Neural Network

Cascade NN is a feed-forward neural network [13] where

the first layer will get signal from input values. Each

subsequent layer will receive signal from the input and all

previous layers. Cascade-correlation (CC) is an architecture,

feed-forward, generative, supervised learning algorithm for

artificial neural networks. Cascade- Correlation begins with

a small network, then automatically repeats and add new

hidden units one by one creating a multi-layer structure.

Cascade-correlation performs better then the Back-

propagation learning algorithm. Accuracy is high in

Cascade-correlation because it has less error values [14].

b) Fuzzy Logic

All systems, which work based on the fuzzy logic try to

simulate human behavior, reasoning and understanding. In

many problems, where decision making is very difficult and

conditions are hazy, fuzzy systems are proficient tool in such

conditions. This technique always wires the facts that may

be ignored.

There are following four stages in the fuzzy logic approach:

Stage 1: Fuzzification: For the linguistic terms, produce

trapezoidal numbers.

Stage 2: By producing a new linguistic term, develop the

complexity matrix.

Stage 3: To find the rate of productivity and the effort for

the new linguistic terms.

Stage 4: Defuzzification: To find out the effort needed to

complete a task and to compare the existing method.

Figure 2: Fuzzy method example

 For example in (Attarzadeh, Ow, 2010) COCOMO

technique has been implemented by using fuzzy method.

The Figure 2 displays all mentioned steps; In the first step

fuzzification has been done by scale factors, cost drivers and

size . In step 2, principals of COCOMO are considered and

defuzzification is accomplished to gain the effort.

4. Comparison of Estimation Techniques

At this section according to the previous presented subjects,

it is possible to compare mentioned estimation techniques

based on advantages and disadvantages of them. This

comparison could be useful for selecting an appropriate

technique in a particular project. On the other hand,

selecting the estimation technique is done based on

capabilities of methods and state of the project. Table I

shows a comparison of mentioned techniques for estimation.

For performing comparison, the admired existing estimation

techniques have been selected. According to the current

comparison and which is based on the principal of the

algorithmic and non algorithmic methods(described in

previous sections); for using the non algorithmic methods it

is necessary to have the enough information about the

similar previous projects, because these methods perform the

estimation by analysis of the historical data. Also, non

algorithmic methods are relative simple to learn and

understand because all of them are followed by the human

behavior. On the other hand, Algorithmic methods are based

on mathematics and some tentative equations. They are

usually difficult to learn and they need to the much data

about the current project state.

Table 1: Comparison of the existing methods
Technique

s
Type Advantages Disadvantages

COCOM

O

Algorithmic
Clear results,

very common

Much data is required, It

„s not suitable for any

project,

Expert

Judgment

Non

Algorithmic

Fast prediction,

Adapt to

especial projects

Its success depends on

the expert, Usually is

done partially.

Function

Point
Algorithmic

Language free,

Its results are

better than

SLOC

Mechanization is hard to

do , quality of output are

not considered

Paper ID: SUB153112 1063

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Analogy
Non

Algorithmic

Works is based

on the actual

experiences,

having special

expert is not

essential

A lots of information

about previous projects is

needed, In some cases

there are no similar

projects.

ANN

Non

Algorithmic

It can derive

precious

information and

regularities from

large databases

essentially.

No guidelines available

for designing the NN

topologies.

Fuzzy
Non

Algorithmic

Training is not

required,

Flexibility

Hard to use, Maintaining

the degree of

meaningfulness is

difficult

Application

Software effort estimation is very important task for

software industry for successful completion of the project.

Some important characteristics of NNs are that they exhibit

mapping capabilities, their capability to generalize,

processing in parallel and fault tolerance.[15] Neural

networks have been successfully applied to a variety of real

world tasks in industry, business and science. Applications

include Accounting and finance, health and medicine,

engineering [16] and manufacturing, marketing, bankruptcy

prediction, image processing, handwriting recognition,

speech recognition, product inspection and fault detection

[17].

5. Conclusion

Finding the most important reason for the software project

failures has been the subject of many researches in last

decade. According to the results of several researches

presented in this paper, the root cause for software project

failures is inaccurate estimation in early stages of the

project. So introducing and focusing on the estimation

methods seems necessary for achieving to the accurate and

reliable estimations. In current study most of the present

estimation techniques have been illustrated analytically. As

the software project managers are used to select the best

estimation method based on the conditions and status of the

project, describing and comprising of estimation techniques

can be useful for decreasing of the project failures. There is

no estimation method which can be present the best

estimates in all various situations and each technique can be

suitable in the specific project. It is necessary to understand

the principals of each estimation method to select the best

suited. Because the performance of every estimation method

depends on several parameters such as complexity of the

project, duration of the project, expertise of the staff,

development method and so on. Some evaluation metrics

and an actual estimation example have been presented in this

paper just for describing the performance of an estimation

method (for example COCOMO). A number of performance

comparisons between neural and traditional estimation

techniques have been made by many studies.

The work to be done in future is to study the new software

cost estimation methods and models that can be help us to

easily understand the software cost estimation process and

Trying to improve the performance of the existing methods

and introducing the new methods for estimation based on

today‟s software project requirements .

References

[1] Pressman, Roger S “Software Engineering:

APractioner's Approach”, 6th Edn., McGraw-Hill New

York, USA.,ISBN:13:9780073019338,2005.

[2] K.Ramesh and P.Karunanidhi “Literature Survey On

Algorithmic And Non- Algorithmic Models For

Software Development Effort Estimation”,

International Journal Of Engineering And Computer

Science ISSN:2319-7242 Volume 2 Issue 3 March

2013 Page No. 623-632.

[3] R.K.D. Black, R. P. Curnow, R. Katz and M. D. Gray,

BCS Software Production Data, Final Technical

Report, RADC-TR-77-116, Boeing Computer

Services, Inc., March 1977.

[4] B.W. Boehm, —Software Engineering Economics,!

Prentice- Hall, Englewood Cliffs, NJ, USA, 1981.

[5] Chris F.K, —An Empirical Validation of Software

Cost Estimation Models!, Management Of Computing

-Communications of ACM, Vol: 30, No. 5, pp.416-429,

, May 1987.

[6] Magne J and Martin S, — A Systematic Review of

Software Development Cost Estimation Studies !,

IEEE Transactions On Software Engineering, Vol. 33,

No. 1, pp. 33-53, January 2007.

[7] K.Subba Rao and L.S.S Reddy “Software Cost

Estimation in Multilayer Feed forward Network using

Random Holdback Method, International Journal of

Advanced Research in Computer Science and Software

Engineering, Volume 3, Issue 10, October 2013.

[8] Bogdan m wilamowsky,” NN architectures and

learning, “fellow member IEEE, USA.

[9] I.F Barcelos Tronto, J.D. Simoes da Silva, N.

Sant'Anna,” The artificial neural networks model for

software effort estimation,”2006.

[10] Sebastian Seung,” Multilayer perceptrons and back

propagation Learning,” 2002

[11] Mikael Boden,” A guide to recurrent neural networks

and back propagation,” Halsted University, 2001

[12] Martin Riedmiller, “RPROP- Description and

Implementation Details, Technical Report”, University

of Karlsruhe,1994.

[13] Vachik S.Dave, Kamlesh Dutta,” Application of Feed-

Forward Neural Network in Estimation of Software

Effort,” Intelligent Systems & Communication

(ISDMISC) 2011.

[14] Anjana Bawa, Mrs.Rama Chawla,” Experimental of

Effort Estimation Using Artificial Neural Network.”

[15] Girish kumar jha,”Artificial NNs and its applications.”

[16] Rossana M. S. Cruz, Helton M. Peixoto and Rafael M.

Magalhaes,” Artificial Neural Networks and Efficient

Optimization Techniques for Applications in

Engineering.”

[17] F. Farnood Ahmadia, M. J. Valadan Zoeja, H. Ebadia,

M. Mokhtarzadea,” the application of neural networks,

image processing and cad-based environments

facilities in automatic road extraction and vectorization

from high resolution satellite images.”

Paper ID: SUB153112 1064

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

