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Abstract: In this paper, we construct an explicit numerical scheme based on Lax-Friedrichs finite difference approximation to find 

the numerical solution of first-order hyperbolic partial differential equation with point-wise advance. The differential equation 

involving point-wise delay and advance models the distribution of the time intervals between successive neuronal firings. We construct 

higher order numerical approximation and discuss their consistency, stability and convergence. Analysis shows that numerical scheme 

is conditionally stable, consistent and convergent in discrete L norm. We also extend our method to the higher space dimensions. Some 

test examples are included to illustrate our approach. These examples verify the theoretical results and show the effect of point-wise 

advance on the solution. 
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1. Introduction 
 

Hyperbolic partial differential-difference equations provide a 

tool to simulate several realistic physical and biological 

phenomena. Several biological phenomena can be modeled 

by time dependent first-order partial differential difference 

equations of hyperbolic type which contains point-wise 

advance or shifts in space. 

 

We consider the following first-order hyperbolic partial 

differential equation having point-wise advance with an 

initial data 0u on the domain : (0,X)  . In general it reads 

0

( , ), , 0,

( ,0) ( ), ,

(0, ) ( ), 0,

( , ) ( , ), [X,X ], 0,

t xu au bu x t x t

u x u x x

u t t for a

u s t s t s for a





 

    

 

 

    

      (1) 

where ( , )a a x t and ( , )b b x t are sufficiently smooth and 

bounded functions of x  and t  in the entire domain and does 

not change its sign in the entire domain,  is the value of 

point-wise advance which is nonzero fixed real number. Let 

( , )a x t A  and ( , ) , ( , )b x t B x t  . The unknown function 

u  is defined in the underlying domain and also in the interval 

 ,X X   due to the presence of point-wise advance. So our 

domain is    0, ,X X X    and 0t  . The coefficients are 

sufficiently smooth functions in these intervals and the 

unknown function u  is as smooth as the initial data. Due to 

the presence of point-wise advance in equation (1), we need a 

boundary-interval condition in the right side of domain, i.e., 

in the interval  ,X X  . The equation (1) is first-order 

hyperbolic with advance terms, so it requires one boundary 

condition according to the direction of characteristics, see 

[8]. Due to the presence of point-wise advance and non-

constant coefficients, it is not difficult but impossible to find 

analytical solution of such type of partial differential 

equations by using the usual methods to find the exact 

solution of partial differential equations, see [4]. 

 

If delay and advance arguments are sufficiently small, the 

author used the Taylor series approximation for the term 

containing shift arguments. The Taylor series approximation 

may lead to a bad approximation when the size of shift 

arguments is large. Therefore, the numerical scheme 

presented in [9] does not work for the problem with large 

shift argument. To overcome this difficulty, we generate a 

special type of mesh so that the difference term lies on the 

nodal point in the discretize domain and present a numerical 

scheme that works nicely in both the cases. We construct the 

numerical scheme to find the approximate solution of 

problem (1) in Section 2 and discuss the stability, consistency 

and convergence. In Section 3, we discuss the extension of 

numerical scheme in higher space dimensions. In Section 4, 

we include some test examples for numerical illustration. 

Finally, in Section 5, we make conclusions that illustrate the 

effect of advance arguments on the solution behavior. 

 

2. Numerical Approximation 
 

In this section, we construct numerical scheme based on the 

finite difference method [8]. We discuss first and second 

order explicit numerical approximations for the given 

equation (1) based on Lax-Friedrichs finite difference 

approximations. For space time approximations based on 

finite differences, the ( , )x t  plane is discretize by taking 

mesh width x  and time step t , and defining the gird 

points ( , )j nx t  by 

,jx j x    0,1,..., 1, ;j J J    
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,nt n t    0,1,2,...n   

Now we look for discrete solution n
jU  that approximate 

( , ), ,j nu x t j n . We write the closure of x  as 
x

  and 

( , 0,1,2,..., ).
x jx j x j J


      

 

2.1 Construction of the numerical scheme 

 

In this approximation, we approximate the time derivative by 

forward difference and space derivative by centered 

difference and then we replace n

jU  by the mean value 

between 
1

n

jU 
 and 

1

n

jU 
 for stability purpose. Numerical 

scheme is given by 

1 11

1 12 ( , )
2

n n
j jn

n n
j

j jn n
j j j

U U
U U U

a b u x t
t x



 

 


 

  
 

     (2) 

To tackle the point-wise advance in the numerical scheme 

(2), we discretize the domain in such a way that ( )jx   is a 

grid point, 0,1,..., ;j J   i.e., we choose x  such that 

0 0,m x m     and we take total number of points in 

x direction s.t. 

( )
,

X mantissa
J lX

x




 


  ,l  

where mantissa of any real number is defined as positive 

fractional part of that number. 

The term containing point-wise delay ( 0,1,..., )j J   can 

be written as  

   
00 0( , ) ( , ) (( ) , ) n

j n n n j mu x t u j x m x t u j m x t         U  

Therefore the numerical approximation is given by 

0

1 11

1 1 ,2 ,
2

n n

j jn
n n

j
j jn n n

j j j m

U U
U U U

a b U
t x

 

 




 

 
 

 

        1,2,..., 1j J          (3)  

together with initial and boundary-interval conditions are 

given by 
0 0

0

( ), 1,..., 1,

(0, ), 1,2,...

(s, ), [ , ] 1,2,...

j j

n

n

n

J n

U u x j J

U t n

U t s X X n



 

  

 

    

  (4) 

 

2.2 Stability Analysis 

 

Definition:  The finite difference method is called stable in 

the certain norm .  if there exists constant 0C  , 

independent of the space step and possibly depending on the 

time step such that 

 0 , 1,2,...nU C U n    

now consider the finite difference scheme as given equation 

(3) i.e. 

0

1
1 1

1 1
1 1

2 2

n n n n n n n
j j j j j j j m

t t
U a U a U b tU

x x


  
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        
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1
1 1

1 1
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j j j j j

t t
U a U a U

x x


 
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      
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0

n n
j j mt b U    

taking the sup norm, we get 
1 1supn n

jL
j

U U


   

  1 1

1 1
sup 1 sup 1

2 2

n n n n

j j j j
j j

t t
a U a U

x x
 

    
      

    
 

             
0

sup n n

j j m
j

t b U   

Using CFL condition 1
t

A
x





, (where A is the bound of 

( , ), ( , t)a x t x ), first two terms in the above inequality can 

be combined and we get 
1 (1 )n n

L L
U B t U

 

     

where ( , ) , ( , )b x t B x t  . The term B t  can be controlled 

by t  from which we can predict that the effect of the term 

B t  is of the form ( )O t . Using these values, we get 

   1 (1 ( ))n n

L L
U O t U

 

     

i.e., 

   1n n

L L
U C U

 

   

 which implies the stability of the numerical scheme where 

stability constant C is of the form (1 ( ))C O t   . 

 

2.3 Consistency of numerical scheme 

 

The consistency error of the numerical scheme is the 

difference between both sides of the equation when the 

approximate solution n
jU  is replaced by exact solution 

( , )j nu x t  in the numerical scheme.  If u   is sufficiently 

smooth, the consistency error 
n

jT  of this finite difference 

scheme is given by 

1 1

1

( , ) ( , )
( , )

2

j n j n

j n
n

j

u x t u x t
u x t

T
t

 


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


 

    
0

1 1( , ) ( , )

2

j n j nn n n

j j j m

u x t u x t
a b u

x

 




 


 

now using Taylor series approximation for the term 

1( , )j nu x t   w.r.t. to t  and for the terms  1( , )j nu x t  and 

1( , )j nu x t   w.r.t. to x , we get 

2 4
21

( ) ( )
2 2

n

n

j t tt xx

j

x x
T u tu u O t O

t t

  
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0

2 41
( ) ( )

6

n

n n

x xxx j j m

j

a u x u O x b u 

 
      
 

 

 
0

21
[ ]

2 2

n n n

t x j j j m tt xx

x
u au b u tu u

t
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2
4 1 4 2( ).

6

n

j xxx

x
a u O x t x t

       

Since u  is exact solution, we get  

0
[ ] 0n n n

t x j j j mu au b u      

hence 
2 21

2 2 6

n n
j tt xx j xxx

x x
T tu u a u

t

 
   


 

      4 1 4 2( ).O x t x t      

Therefore, 0n
jT   while ( , ) (0,0)x t   , which shows 

that the numerical scheme is consistent of order 2 in space 

and of order 1 in time as long as 1 2 0.t x    

 

2.4 Convergence of the scheme 

Definition: A finite difference scheme is said to be 

convergent if for any fixed point * *( , )x t  in a given domain 

(0,X) (0, )nt , 

* *,j nx x t t     * *( , )n

jU u x t  

the error in the approximation is given by  

( , ).n n
j j j ne U u x t   

Now n
jU  satisfies the finite difference scheme (3) exactly, 

while ( , )j nu x t  leaves the remainder n
jT t . Therefore the 

error in the approximation  is given by 

 
1

1 1

1 1
1 1

2 2

n n n n n

j j j j j

t t
e a e a e

x x



 

    
      
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0

n n n

j j m jb te tT    

and  
0 0.ne   

Let   max , 0,1,...,n n

jE e j J   

Hence for 1,n

j

t
a

x





 

   
1 1maxn n

j
j

E e   

    maxn n n n

j j
j

E b tE t T     

    (1 ) maxn n

j
j

B t E t T     

using the given initial value for 
n

jU , so 0 0E   and if we 

suppose that the consistency error is bounded i.e. max ,n

jT T  

then by induction method  

max max ,n

nE n tT t T               

which shows that the method has first-order convergent 

provided that the solution has bounded derivatives up to 

second order. 

  

3. Extension to Higher Spatial Dimensions 
 

Now we consider the extensions of the numerical schemes to 

the higher spatial dimensions. For the sake of simplicity, we 

consider the problem in two spatial dimensions. The 

extension to three spatial dimensions can be done in similar 

fashion. The natural generalization of the one dimensional 

model problem (1) is the following equation together with the 

initial data and boundary interval conditions in the 

rectangular domain (0,X) (0,Y)   . 

( ,y , ),t x yu au bu cu x t                  (5) 

where , ,a b c  are functions of ,x y  and t .   and   are 

the values of point-wise delay in x  and y -direction 

respectively. For numerical approximations, we discretize the 

domain by taking uniform gird points with the spacing x  

in the x -direction and y in the y -direction. The gird 

points ( , ,j k ny tx ) are defined as follows  

, 0,1,..., ;j xj x j Jx     

, 0,1,..., ;k yy k y k J    

, 0,1,...nt n t n    

Now we write the extension of Lax-Friedrichs scheme (5). 

The approximate solution at the gird point ( , ,j k ny tx ) is 

denoted by
,

n

j kU . Thus the numerical scheme is given by 

 1

, 1, 1, , 1 , 1

1

4

n n n n n

j k j k j k j k j kU U U UU 

         

   , 1, 1, , , 1 , 1
2 2

n n n n n n

j k j k j k j k j k j k

t t
a U U b U U

x y
   

 
  

 
 

       
0 0, , ,n n

j k j m k qtc U               (6) 

together with appropriate initial and boundary-interval 

conditions. We take the grid points in the both directions 

( x and y ) in such a way that the term containing point-wise 

advance is also belong to discrete set of grid points which 

can be done as we did in the one dimensional case. We take 

total number of points in both x  and y  direction such that 

corresponding delays are on 
0m  and 

0q  nodal points and 

total number of points in the both directions is given by 

( )
, ,x

X mantissa
lX l

x
J




  


  

( )
, ,y

Y mantissa
rY r

y
J




  


  

 

Table 1: The maximum absolute error for example 1 

t  x   1/100        1/200            1/400        1/800      

x /2       0.05449       0.02733        0.01365     0.00682 

x /4       0.02724       0.01366        0.00682     0.00340 

x /8       0.01362       0.00683        0.00341     0.00170 

x /16      0.00681       0.00341        0.00170     0.00084 

 

 

 

 

 

 

Table 2: The maximum absolute error for example 2 

t  x   1/100        1/200            1/400        1/800      

x /2       0.05199       0.02608        0.01303     0.00651 

x /4       0.02599       0.01304        0.00651     0.00325 

x /8       0.01299       0.00652        0.00325     0.00162 

x /16      0.00649       0.00326        0.00162     0.00081 
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Most of the analysis of the numerical approximation in one 

dimension is easily extended to the two dimensional case [8]. 

Truncation error of this approximation (6) will remain as in 

the one dimensional case except some additions due to the 

presence of y  variable, see [8]. Usual analysis will give the 

CFL condition for stability in the following form 

     1,
A t B t

x x

 
 

 
 

where A and  B are the bounds of a and b respectively. 

 The proof of convergence follows in similar way, leading 

to error in the approximation  

     
max max ,n

nE n tT t T    

provided that the CFL condition is satisfied and u  has 

bounded derivatives up second order. 

 

4. Numerical Illustration 
 

The purpose of this section is to include some numerical 

examples to validate the predicted results established in the 

paper and to illustrate the effect of point-wise advance on the 

solution behavior. We perform numerical computations using 

MATLAB. The maximum absolute errors for the considered 

examples are calculated using half mesh principle as the 

exact solution for the considered examples are not available 

[5]. We calculate the errors by refining the grid points. The 

error in the numerical approximation is given by  
/2

/2
0 ,0

( , t) max ( , ) (2 ,2 )t t

x x
j J n Nt

E x U j n U j n 

 
   

     

We consider (0,1), .001x t      for example 1 and 2. 

The numerical solution is plotted for different values of   at 

the time 0.5t  in figure 1 and 3 and for various values of 

time t  in figure 2 and 4. 

 

Example1. Consider the problem (1) with the following 

coefficients and initial- boundary conditions: 
2

2 4

1
( , ) ;

1 2 2

x
a x t

xt x x




  
  ( , ) 0.5;b x t    

2( ,0) exp[ 10(4 1) ];u x x    ( , ) 0, [1,1 ]u s t s     . 

 

Example2. Consider the problem (1) with the following 

coefficients and initial- boundary conditions: 
2

2 4

1
( , ) ;

1 2 2

x
a x t

xt x x




  
  

2 2 4

1
( , ) ;

1 2
b x t

x t x


 
        

2( ,0) exp[ 10(4 1) ];u x x    ( , ) 0, [1,1 ]u s t s     . 

We consider the two dimensional problem (5) with variable 

coefficients. We consider (0,1) (0,1),    .01x y     

and time step .001t  . The approximate solution is plotted 

with 0.5   and 0.5   at time 0.5t  in figure 5. 

 

Example3. Consider the 2-D problem (5) with the following 

coefficients and initial- boundary conditions: 
2 2

2 2 4

1
( , , ) ;

1 2( ) 2( )

x y
a x y t

x y t x y x

 


    
 

2 2 2 4

1
( , , ) ;

1 2( )
b x y t

x y t x


  
 

2( , ,0) exp[ 10(4 4 1) ];u x y x y      

1 2 1( , , ) 0, [1,1 ]u s s t s        and     
2 [1,1 ]s    .  
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Figure 1: The effect of the point-wise advance on solution at 

0.5t  for example 1. 
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Figure 2: The numerical solution of Example 2 for different 

time levels for .05  . 
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Figure 3: The effect of the point-wise advance on solution at 

0.5t  for example 2. 
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Figure 4: The numerical solution of Example 2 at different 

time levels for .05  . 
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Figure 5: The numerical solution of Example 3 for 0.5   

and 0.5  at 0.5t  . 

 

5. Conclusion 
 

In this paper we propose a numerical scheme based on Lax-

Friedrichs finite difference approximations of order greater 

than one in space to solve hyperbolic partial differential 

equation with point-wise advance. The consistency, stability 

and convergence analysis prove that the proposed numerical 

schemes are consistent, stable with CFL condition and 

convergent in both space and time. This second order 

numerical scheme in space maintains the height and width 

better than a first-order scheme as author discussed in paper 

[9]. The effect of point-wise advance on the solution 

behavior is shown by the some test examples. Error tables 

illustrate the fact that the methods are convergent in space 

and time. The solutions are plotted in graphs which shown in 

figures 1-5. Also we extend our ideas in higher space 

dimensions and include numerical experiment to show the 

behavior of solution in two space dimension. 
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