
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Comparative Analysis of Some Encryption

Algorithms and Secured Remote Protocol

Ojekudo Nathaniel Akpofure (Ph.D)
1
, Nwankwe Dimie (M.Sc)

2

1Ignatius Ajuru University of Education

2National Open University of Nigeria

Abstract: The need for information assurance and security all over the world cannot be overemphasized. Attacks on security of a

computer or network are generally characterized as interruption, interception, modification and fabrication. The four main security

issues related to these are confidentiality, authentication, integrity and non-repudiation. Cryptography is necessary and must be

applied on many network layers. The Research work intends to compare some encryption algorithms and secured remote protocol

based on the four main security issues and also developed a prototype attached in the appendix.

Keywords: Cryptography, Encryption, Algorithm

1. Background of the Study

The vulnerabilities of IT systems have become a regular

phenomenon in the press, so much that no day passes

without news items or articles about some security bug or

exploit. Hackers‘ break-in and compromise personal

computers. Industrial espionage is no new economic threat

(Nowell Security Enforcement, 2003) and it has costed

organizations millions of dollars.

People continue to transmit private messages over

unsecured telephone lines via e-mail in ASCII text, which

is the least common denominator for electronic text that

rely heavily on passwords, cards, personal identification

numbers, and keys to access restricted information or

confidential files. But these forms of identification can be

forged, stolen, given away or even lost. Many systems rely

on IP address verification that limits access to users with a

specific domain name or Internet address. Basically, this

procedure identifies an individual by the machine he or she

uses. Anybody using a particular computer can

impersonate the rightful owner.

Corporate information officers in all sectors must take

proactive and appropriate measures to protect their

networks and create better security architecture, especially

now that we have entered a period of cyber security

uncertainty. With no assurance regarding the security

qualities or even the origin of software and systems,

system owners have few components from which to

construct sound security architectures. It is essential to

protect the communication channels and the interfaces of

any system that handles information that could be the

subject of attacks. Secure Socket Layer (Allan, Philip and

Paul, 1996) and Wireless Transport Layer Security (WAP

Forum, 2000) is one of the few examples amongst various

security protocol tools that have been proposed to address

this issue. Security protocols are carefully designed to

guard against loopholes. To this end, a practical Secure

Socket Layer (SSL) protocol has been adopted for

protection of data in transit that encompasses all network

services that use TCP/IP. This of course supports typical

application tasks of communication between servers and

clients.

2. Related Literature

Cryptography is the study of secret writing, Crypto

(Secret) and graphy (writing). It is the art and science

encompassing the principles and methods of transforming

an intelligence message into one that is unintelligible and

then transforming that message back to its original form.

Cryptographic algorithms are used in encrypting an

original plaintext message into a cipher text at the sender

side and to decrypt the cipher text back to the original

message at the receiver side. The encryption and

decryption processes depend on a secret key being shared

between the sender and the receiver (Marek, and Urszula,

2009).

There are three types of cryptographic algorithms:

symmetric-key algorithms, asymmetric-key algorithms,

and hashing functions.

2.1 Symmetric Key Algorithms

In Symmetric key algorithms or private key algorithms,

both the sender and the receiver make use of the same key

for both encryption and decryption. In a two-party

communication, both parties must have access to the same

key before transmission and measures must be taken to

protect the secrecy of the key. The key distribution

becomes increasingly more difficult when the network

grows since each pair of users must exchange keys. The

total number of keys in an n-person network is n (n- 1)
12.

Though, symmetric key algorithms provide strong

security, it suffers from this key distribution problem. The

widely adopted symmetric key algorithms include Data

Encryption Standard (DES); Triple DES (3DES) (NIST

FIPSPUB, 1999) and Advanced Encryption Standard

(AES) (NIST FIPSPUB, 2001).

2.2 Asymmetric Key Algorithms

In Asymmetric key algorithm, each party have their own

private key, which is shared with no-one, and a public key

that is known to all other communicating parties. This is

also called public key algorithms. When sending a

Paper ID: SUB152919 731

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

message to a particular receiver, the receiver‘s public key

is used to encrypt the message. After receiving the

message, it is decrypted using the receivers own private

key. Compared to symmetric key algorithms, asymmetric

key algorithms eliminate the need to secretly distribute a

key, and therefore solve the key distribution problem.

2.2.1 Hashing Functions

Unlike the other two types of cryptographic algorithms

mentioned above, hashing functions do not involve the use

of keys. They take a variable length string as input and

convert it to a fixed length output. An example is MD5

and SHA- I (NIST FIPS-180-2, 2002).

2.3 Basic Vulnerabilities and Network Threats

It is usually difficult to say which threat is important and

most dangerous from security point of view. This depends

on a lot of factors, for example Denial-of-Service attack

for web page of small company which does not utilize

Internet as basic information carrier is not so important

compared to attacks for Internet –based company. There

are some common, well known basic security attacks

against well known vulnerabilities or properties of network

protocols. Many of them are mentioned here such as

Physical security, Sniffing and Spoofing, Spanning Tree

Protocol vulnerabilities, Attack against IP protocols just to

mention a few.

3. Methodology

Cryptography is a very important tool in network security.

It is one of the most critical and necessary element of

every network infrastructure and communication,

Confidentiality and data integrity are ensured by

cryptographic algorithms. One of the most important

groups of algorithms in cryptography is encryption

algorithms. The Augusta Kerckhoff‘s principle (Marek R.

Ogiela, 2002) state that, ―every encryption algorithm shall

be publicly known and only cryptographic key shall be

hidden‖ all algorithms utilized for security purpose is in

compliant with this axiom. Algorithms with symmetric

keys are very popular and used in almost every encrypted

connection. Such algorithms utilize only one private key

shared between peers. The problem associated with this is

in how to send secret key using unsecured channel? This

section describes some of the most popular symmetric

algorithms.

3.1 Data Encryption Standard

Created by IBM (International Business Machines

Corporation) in 1976 (Gregory et al; 2009), in response to

a request for proposals for a standard cryptographic

algorithm from the National Bureau of Standards (NBS),

now the National Institute of Standards and Technology

(NIST). The original Prototype of DES algorithm was

called Lucifer (Marcin K, 2012) and uses 128-bit keys.

There are few legends that DES algorithm has a backdoor

introduced by National Security Agency. There are few

known attacks like linear or differential cryptanalysis but

both may be applied to all S-box based algorithms, not

only to DES.

Figure 1.3: Encryption of Single Block in DES Algorithm

DES is a block cipher based on Substitution boxes (S-

boxes) theory. Plain text is split into 64-bit blocks. The last

block is padded to 64 bits. The 56-bit key is elongated to

64- bit with the last bit of every byte being a parity bit.

Every of 64-bit blocks are encrypted as a separate data and

takes eighteen actions (Figure 1.3). The initial action is an

initial permutation. The block is then divided into left and

right halves. Every part contains 32 bits. There are sixteen

rounds, called Feistel permutations. Every round produces

left and right part. Ki represents 48-bit round key derived

from original key given as encryption key for algorithm.

The f function has few steps described below:

i. 32-bit right part (Ri) of round data is expanded to 48

bits

ii. R is XORed with round key K

iii. XOR result is splitted into 8 parts, every part has 6

bits

iv. Every part are shortened to 4 bits after S-box

substitution

v. Final permutation is performed

Round key is computed according to the following rules:

o Initial key is splitted into two parts

o Every part is shifted to the left about specified number

of bits (depends on iteration number)

o Both parts are concatenated and 48 bits are selected

according to p-box (permutation box)

Last operation is inverse permutation to produce cipher

text. The result of DES is 64-bit block with cipher text.

Li = Ri-1

Ri = Li-1 XOR f(Ri-1, Ki) 1.3

Paper ID: SUB152919 732

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

DES algorithm has been a cryptographic standard over the

years. However there are four weak keys (see Table 1.3) in

DES algorithm. These keys produce the same round keys

in all sixteen rounds and give cipher text the same as plain

text. Moreover there are twelve semi-weak keys (Table

1.4). Semi-weak key reduces number of effective rounds

and gives much better opportunity to effective

cryptanalysis. There are also 48 keys that produce only

four distinct round keys (instead of 16) - these are called

possibly weak keys.

Table 1.3: DES four weak keys
0x 0000 0000 0000 0000

0x 0000 0000 FFFF FFFF

0x 0EOE 0E0E F1F1 F1F1

0x F1F1 F1F1 0EOE 0E0E

Table 1.4: DES Half weak keys
0

x

011

F

011

F

010

E

010

E

0

x

1F0

1

1F0

1

0E0

1

0E0

1

0

x

010

E

010

E

01F

1

01F

1

0

x

E00

1

E00

1

F10

1

F10

1

0

x

01F

E

01F

E

01F

E

01F

E

0

x

FE0

1

FE0

1

FE0

1

FE0

1

0

x

1FE

0

1FE

0

0EF

1

0EF

1

0

x

E01

F

E01

F

F10

E

F10

E

0

x

1FF

E

1FF

E

0EF

E

0EF

E

0

x

FE1

F

FE1

F

FE0

E

FE0

E

0

x

E0F

E

E0F

E

FIF

E

FIF

E

0

x

FEE

0

FEE

0

FEF

1

FEF

1

3.2 Triple DES

Triple DES (or 3DES) utilises DES algorithm. It encrypts

plain text three times with three different keys. The

purpose of 3DES creation is to shorten the key in DES.

Depending on the specific variant, 3DES uses two or three

keys instead of single 56-bit key. Two keys variant is in

Figure 1.4. The Plain text is encrypted two times and

decrypted once in two keys variant 3DES. Decryption with

a second key is performed between two encryption

processes with the first key.

Figure 1.4: Encryption in two keys (K1 and 1(2) variant

of Triple DES

This algorithm increases the number of attempts needed to

retrieve the secret key which is concatenation of all used

56-bit keys. It is a significant enhancement of security.

The most important issue for Triple DES is that all weak,

semi weak and possible weak keys exist also in 3DES

algorithm.

3.3 Substitution Box Theory

DES and 3DES uses Substitution-boxes and Feistel

permutations. There is a common theory which describes

S-boxes. According to Shannon theory (C.E. Shannon,

1948), the most important things are: confusion and

diffusion. Moreover there is an assumption that good S-

boxes shall have the following properties (we assume that

x {O, 1} and a {O, 1}):

1. Strict avalanche criterion (SAC) — single input bit

change should affect at least half of output bits (at least

half of them should be changed). This property is

applicable also to P-boxes

2. Completeness — every output bit should be a complex

function of every input bit. This property is also

applicable to P-boxes

3. Well balanced — binary function fr—GF (2) is well

balanced if the truth table contains 2n − 1 zeros (and

ones), where GF (2) means binary Galois field.

4. Non-linearity — the minimum distance between the

function and the set of all affine functions.

5. Propagation criterion of degree k — the function f holds

this criterion if:

∀x ∈ Σn , a ∈ Σn , a ≠ 0n f x XORf xXORa : 1 ≤ W(a)
≤ k

6. Good XOR profile — should not contain entries with

big numbers, big numbers requires more rounds. XOR

profile shows differences between S-box input and

output data. Proofs and Properties of S-boxes can be

found in (Pieprzyk, T. Hardjono et al; 2003), Marcin K,

2012).

3.4 Advanced Encryption Standard

Advanced Encryption Standard (AES) algorithm is much

more secure than DES (Gregory white, WM; Arthur

Conklin et al; 2009). The main reason is the key length

(128, 192 or 256 bits). The Original algorithm supported

more keys: 128-, 160-, 192, 224- and 256 bits.

The first step in AES algorithm is to divide the input, plain

text to 128-bit length blocks. As shown in table 1.5, the

number of rounds depends on the key‘s length. Data are

stored in byte matrix. The height of every matrix is 4

bytes, so the key and block matrix sizes may be computed

as total bits divided by 32 (4 8 bits = 32 bits).

Table 1.5: Number of round, Key and Matrix sizes as a

function of key‘s length

Key Matrix

size [B]

Block Matrix

size [B]

Number of

rounds

AES-

128
4 4 10

AES-

192
6 4 12

AES-

256
8 4 14

There are four functions used for encryption in AES

algorithm: SubBytes, ShiftRows, MixColumns and Add

Round Key. Matrix with initial plain text is called the

state. Previously a mentioned function operates on these

states and transforms bytes inside matrix. Pseudo-code of

AES algorithm is listed below:

Paper ID: SUB152919 733

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The SubBytes function operates independently on every

byte given state doing nonlinear transformation according

to S-box table, Table 1.6.

Table 1.6: SubBytes S-box in AES. All values are in

hexadecimal system

S-box transformation is a substitution of input bytes for

bytes from S-box table. The first four bits (most-

significant bits) are x value and then next four bits (least-

significant bit) are y value in S-box table. The Shift Rows

function shifts last three row of every state in left side. The

first row is not changed. The second row is one byte

shifted, third row is two bytes shifted and forth row is

three bytes shifted in the right. The MixColumns function

works with columns of state. Four values in every column

are third degree polynomial coefficients. This polynomial

is multiplied by: (03)16x
3
.(01)16x

2
.(01)16x.(02)16x mod

x
4
+1. The AddRoundKey transformation utilizes only

XOR function. The current state is XORed with current

round‘s key. Round‘s key is generated by KeyExpansion

function described in [http://csrc.nist.gov/publications).

Decryption process is quite similar to encryption. Almost

all helper function in this process is inverse functions to

previously described helper functions. Pseudo-code of

inverse AES is listed below:

3.5 Blowfish Algorithm

The Blowfish is a symmetric block cipher based on Feistel

permutations, S-boxes and P-arrays. Designed by Bruce

Schneier in 1996, it provides a good encryption rate and no

effective cryptanalysis of it has been found to date. The

only successful cryptanalysis against this algorithm was

against variants that uses reduced number of rounds.

Blowfish cipher splits input plain text into 64-bit blocks

and the key length is variable from 32 to 448 bits. There

are sixteen rounds in this cipher. Encryption is performed

by separating 64-bit input block into two 32-bit blocks and

the function is executed every round:

Paper ID: SUB152919 734

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Flowchart for the Proposed System

Start

Is

PwdHash=String

?

DIM

PwdHash

As String

Compute

Hash=Plaintext

As String,

SaltByte As Byte

Is salt

Nothing?

MinsaltSize=4

MaxSaltsize=8

SaltSize=random.

next(MinSaltSize,

Maxsaltsize)

SaltByte=NewByt

e (SaltSize-1)

Call Systems

Class

function

Initialize random

number

generator.SaltByt

e

PlantextByte =

encoding.UTF8.GetByte

(Plaintext)

Set Counter for

PlaintextByte Length

Set Count for SaltByte

Y

Y

Y

N

N

Hash=NewSHA256

HashByte=Hash.ComputeHash

(Plaintext with SaltByte)

For I=0;HashByte.Lenght-1

HashwithSaltByte[i]=HashByte

Is

Hash=NewSHA256

?

Y

N

SaltByte=NewByte

(SaltSize-1) ?
N

1

ComputeHash =

HashValue

Is

ComputeHase=

HashValue?

Decrypt: Convert

Encoded

HashValue to

Byte Array

HashSize = 256

HashsizeInByte=

HashsizeInBit/8

Y

Y

Y

PwdHash=ComputeHash

(Textword, Nothing)

Is VerifyHas =

Expected Hash

?

Y

Is HashSize=256? N

1

Create Encryption,

convert to base 64

encoded String

N

HashwithSaltByte

<

 HashSizeinByte

 ?

False

Hold result

Is I = SaltByteLength

?

N

N

Print TrueStop

N

Y

4. Discussion of Results

Secure programming principles are very important. The

rules applied are as contained in (Michael Howard, David

LeBlanc et al; 2005), (http://www.sans.org/top20/2000)

and (Maura A. van der Linden; 2007). The code is covered

by test cases. Test sets included unit tests, component

tests, integration tests and sanity test cases. No network

scanners were in use due to lack of attack vectors to SRP.

It would be good to test such implementation by

penetration tests. Such tests were not performed because

all known bugs were fixed during implementation. There

were also lack of pen-testers who may implement such test

scenarios. This is an issue to current SRP implementation.

Paper ID: SUB152919 735

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Attached in the Appendix is a new SRP with the features

as described below.

4.1 Security implementation guidelines for remote

protocols

Systems are said to be most secure at its weakest part.

Many systems have its own communication protocols to

exchange messages between hosts. Cryptography is very

important to make the protocol secure, however, this is not

enough because there are many other dangers. It is advised

that the designer of any protocol should implement secure

patterns described here.

4.2 Cryptography-Related Dynamics

Clear-text protocols are not secure because everybody can

listen to transmitted packets, it is better to exchange them

or create new, fake packets to trigger some events in the

system. Therefore cryptography is necessary. The first

thing cryptographic algorithms provide is confidentiality.

Messages transmitted over the network sometimes are

classified and sensitive. Moreover personal data are

protected in many countries and as required by law. Such

data needs to be protected by encryption algorithms.

Symmetric and asymmetric encryption algorithms were

described earlier. Data transmitted over the network needs

to be consistent. Remote protocols are used in distributed

systems for instance, shopping, and financial operation or

even in Supervisory Control And Data Acquisition

(SCADA systems).

We cannot allow the exchange of sensitive data in clear

text. Data integrity mechanism needs to be implemented

by one-way hash functions, described also in third chapter.

Cryptographic mechanisms shall also protect against

replay attacks and such mechanisms should be build-in

into the protocols. Such mechanisms may be implemented

by additional numbers sent in packages and checked by

destination hosts. Replay attacks are also quite dangerous

as it poses a lot of danger (Shu-Wai Chow; 2007)

including bringing danger in mission critical systems.

Random numbers used for securing protocols should be as

random as possible. Applications that use weak random

number generators are more vulnerable to attack.

4.3 Authentication, Authorization and Accounting

Verification of the identity of a user or device wishing to

access the application is called the authentication process.

This process establishes a trust relation between the user or

other service and the application. There are many kinds of

authentications. If the client wants to trust the server, the

server authentication is required. On the other site almost

every server authenticates users who want to perform

some operations. The best way of authentication is the

mutual authentication. Secure Remote Protocol provides

such mechanism. Authentication mechanisms may be

divided into few types.

a) PNCODE This is something you know: passwords are

something like users‘ identities.

b) Something you have: this includes: magnetic cards,

smart cards, software and hardware tokens and many

others.

c) Identity recognition: Here Identity is confirmed by

something you looks like for example fingerprint or iris

in the eye.

d) Identity Confirmation: checking identity examples are:

handwritten signature or tone of the voice.

These methods are quite similar to third group. Both

groups include biometric methods. The difference is that

last group is behavior-related and third group contains

static properties. Many guidelines advise to use at least

two groups of authentication. It is much more difficult for

the intruder, to give correct credentials if we use two or

more types of authentication.

Authentication process is not enough (Michael Cross,

Norris L. Johnson ‗2003). Every legitimate user has its

own right in the system. We have to check user‘s right

before performing any requested operation. This action is

called authorization. Trusted users and devices may have

permissive rights than guest users. Appropriate

configuration and user management is very important to

secure system. An excessive privilege in the system

allows too many users for unnecessary actions. Access

Control is of the following types:

a) First type is Mandatory Access Control (MAC). This

is based on the sensitivity of the resource.

b) Discretionary Access Control (DAC). An Access

Contract that assumes that the owner of the resource

has the ability to change the permissions for rest of

users/devices (it is the most common access Control).

c) Rule-Based Access Control (RBAC): Here access is

granted or denied based on the set of predefined rules.

d) Role-Based Access Control (RBAC). The acronym is

the same, but the idea is quite different. Role-Based

Access Control is related to user‘s roles in the

organization.

Every user/device has at least one role and access is

granted only if the role allows for such access to specified

resource. Detailed information about described access

control methods is in (Gregory White, Wm. Arthur

Conklin, Dwayne Williams et al; 2009).

4.4 Denial-of-Service

Prevention against Denial-of-Service (DoS) attacks is very

difficult task. Localized DoS attacks may be discovered

because of huge number of similar requests. In this case

source of the attack may be blocked and the server may be

freed from unnecessary operations. However such DoS

attack is very simple and not performed very often. Almost

every Intrusion Detection System (IDS) may discover and

protect against such attacks. Distributed DoS is a more

complicated kind of attack. There is no single source of

such attack. It is very difficult to protect the system against

such attack and it is almost impossible to protect the

system without very good IDS and additional network

connection.

Secure protocol should have limits for specified operations

and such limits should be managed by the administrator.

Sources of attack should be also blocked. It is very hard to

Paper ID: SUB152919 736

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

implement such things and some part of the risk may be

mitigated to appropriate firewall and IDS.

4.5 Input Validation

Most of threats listed on the top ten lists

(http://www.sans.org/top20/2000) are related to

insufficient input validation. The secure implementation of

any protocol should validate input specified in the protocol

description. Also programmers should validate the input

even if the implementation of the utilized protocol is

secure. The protocol‘s specification allows for quite big set

of values, for example for any 32-bit integer value, but

only small subset may be allowed. In this case it is

impossible to block incorrect messages on the protocol‘s

layer.

Wrong values in the network messages may cause

information leaks, performing of unprivileged operations

or crashing the program. All these threats shall be

addressed in the protocol‘s implementation by input

validation. Secure protocol cannot be vulnerable on any of

the above mentioned threats. SRP implementation in Java

properly addresses input validation issues and contains

utils exception packet with Exceptions thrown in case of

any errors on the input.

Others, such as Race conditions, where Servers which

have many client connections implement many threads in

single process or runs many processes with inter-process

communication mechanisms (Shu-Wai Chow; 2007).

Third party software and unsafe functions where only

well-checked cryptographic modules should be used as we

can‘t be so sure that third party software used in protocol‘s

implementation does not contain bugs and vulnerabilities.

Security-related tests where every project, including new

protocol designing shall have special testers for security

purpose. These testers shall perform both: black-box and

white-box penetration tests.

5. Conclusion and Recommendations

The basis of this paper is to show that it is possible to

create a new, universal network protocol designed for

remote procedures, function or methods calls with the

following properties:

 The protocols will have built-in security mechanisms.

 Security mechanisms will be configurable in that way

that the security level will be aligned with current

requirements for the system using the protocol

(including clients and legal requirements).

 The protocol shall be platform and programming

language-independent. In line with the following

objectives:

 Propose of a new protocol specification meets the

characteristics listed above.

 Sample implementation of the designed protocol.

 The analysis of the proposed protocol.

 The analysis of the mechanisms and risks in the existing

network protocols for remote function and procedure

calls and

 An attempt to describe the security implementation

guidelines that should be used when designing new

network protocols.

 Identification of further developments in the field of

remote network protocols security.

 These goals were met and sample implemented. A new

SRP protocol has build-in security mechanism not

limited only to cryptographic algorithms. It is a flexible

and can easily be configured by the administrator as

recompilation is not needed.

References

[1] Allan, O.F., Philip K. & Paul C.K. (1996). The SSL

Protocol Version 3.0, Internet Draft

[2] Andrew, S.T. (2003). Computer Networks (4th

Edition) - Prentice Hall, New Jersey

[3] Bruce, S., (1996). Applied Cryptography, John Wiley

and Sons,

[4] Gregory, W.W., Arthur C., Dwayne, W., Roger, D., &

Chuck C., (2009). CompTIA Security+ Exam Guide -

McGraw Hill

[5] Marcin, K. (2012). Rainbow tables as brute-force

algorithm optimization (Vol 28) Krakow,

Elektrotechnika in Elektronika, wyd. AGH, (pages 7-

13)

[6] Marek, R.O., Urszula, O (2009). Linguistic

Cryptographic Threshold Schemes,

[7] IJFGCN - International Journal of Future Generation

Communication and Networking, Vol. 2, No. 1, pp.

33-40

[8] Maura, A.V. (2007). Testing Code Security -

Auerbach Publications

[9] National Institute for Standard and Technology

(2001). Advanced Encryption Standard

[10] (AES) FIPS PUB 197, U.S Department of Commerce,

Retrieved from

http://csrc.nist.gov/publication/fips/fips197/fips-

197.pdf

[11] Novel Security Enhancement (2003). Preventing

Industrial Espionage, Retrieved from

http://www.novellgroup.com/index.php?page-

espionage

[12] Ogiela, R. (2002) Advanced Image Understanding and

pattern alaysis methods in Medical Imaging.

Proceedings of the Fourth IASTED International

Conference SIGNAL and IMAGE

[13] Shu-Wai C. (2007) - PHP Web 2.0 Mashup Projects -

Packet Publishing

[14] Shannon, C. E. (1948). Communication theory of

secret systems, Bell Systems Technical Journal, 27,

379, 423, 656

[15] Stanford University (2006). Network security

resources and reporting problems,

[16] School of Earth Science, October 2006, Retrieved

from

http://pangea.standaford.edu/computerinfor/resources/

network/security/

[17] Thomas, H. C, Charles E. L., & Ronald L (2001).

Rivest, Clifford Stein – Introduction to Algorithms,

(2
nd

 Ed), MIT Press and McGraw-Hill

[18] Federal Information Processing Standards (2007).

Announcing the Advanced Encryption Standard

Paper ID: SUB152919 737

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

(AES) Publication 197, Retrieved from

http://csrc.nist.gov/publications/fips/fips 197/fips-

197.pdf

[19] NIST (2008). Recommendation for the Triple Data

Encryption Algorithm (TDEA) Block Cipher Special

Publication Retrieved from

http://csrc.nist.gov/publications/nistpubs/800-

67/SP800-67.pdf - -, May 2008

[20] MIT Kerberos Consortium (2008). The Role of

Kerberos in Modern Information Systems, Retrieved

from

http://www.kerberos.org/software/ro1ekerberos.pdf -

MIT Kerberos Consortium

[21] http://www.w3.org/TR/soap/ - SOAP specifications at

W3C

Appendix 1 – Source Code

Imports System

Imports System.Text

Imports System.Security.Cryptography

Module modHash

Public SaltedHash As String

Public Function ComputeHash(ByVal plainText As String, _

ByVal saltBytes() As Byte) _

As String

'***'REMOTE SECURED

PROTOCOL (RPC) '***

' If salt is not specified, generate it on the fly.

If (saltBytes Is Nothing) Then

' Define min and max salt sizes.

Dim minSaltSize As Integer

Dim maxSaltSize As Integer

minSaltSize = 4

maxSaltSize = 8

' Generate a random number for the size of the salt.

Dim random As Random

random = New Random()

Dim saltSize As Integer

saltSize = random.Next(minSaltSize, maxSaltSize)

' Allocate a byte array, which will hold the salt.

saltBytes = New Byte(saltSize - 1) {}

' Initialize a random number generator.

Dim rng As RNGCryptoServiceProvider

rng = New RNGCryptoServiceProvider()

 ' Fill the salt with cryptographically strong byte values.

 rng.GetNonZeroBytes(saltBytes)

 End If

 ' Convert plain text into a byte array.

 Dim plainTextBytes As Byte()

 plainTextBytes = Encoding.UTF8.GetBytes(plainText)

 ' Allocate array, which will hold plain text and salt.

 Dim plainTextWithSaltBytes() As Byte = _

 New Byte(plainTextBytes.Length + saltBytes.Length - 1) {}

 ' Copy plain text bytes into resulting array.

Paper ID: SUB152919 738

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 Dim I As Integer

 For I = 0 To plainTextBytes.Length - 1

 plainTextWithSaltBytes(I) = plainTextBytes(I)

 Next I

 ' Append salt bytes to the resulting array.

 For I = 0 To saltBytes.Length - 1

 plainTextWithSaltBytes(plainTextBytes.Length + I) = saltBytes(I)

 Next I

 'specify hash algorithm SHA256

 Dim hash As HashAlgorithm

 hash = New SHA256Managed()

 ' Compute hash value of our plain text with appended salt.

 Dim hashBytes As Byte()

 hashBytes = hash.ComputeHash(plainTextWithSaltBytes)

 ' Create array which will hold hash and original salt bytes.

 Dim hashWithSaltBytes() As Byte = _

 New Byte(hashBytes.Length + _

 saltBytes.Length - 1) {}

 ' Copy hash bytes into resulting array.

 For I = 0 To hashBytes.Length - 1

 hashWithSaltBytes(I) = hashBytes(I)

 Next I

 ' Append salt bytes to the result.

 For I = 0 To saltBytes.Length - 1

 hashWithSaltBytes(hashBytes.Length + I) = saltBytes(I)

 Next I

 ' Convert result into a base64-encoded string.

 Dim hashValue As String

 hashValue = Convert.ToBase64String(hashWithSaltBytes)

 ' Return the result.

 ComputeHash = hashValue

 End Function

 Public Function VerifyHash(ByVal plainText As String, _

 ByVal hashValue As String) _

 As Boolean

 ' Convert base64-encoded hash value into a byte array.

 Dim hashWithSaltBytes As Byte()

 hashWithSaltBytes = Convert.FromBase64String(hashValue)

 ' We must know size of hash (without salt).

 Dim hashSizeInBits As Integer

 Dim hashSizeInBytes As Integer

 ' Size of hash is based on the specified algorithm.

 'in this case it SHA256

 hashSizeInBits = 256

 ' Convert size of hash from bits to bytes.

 hashSizeInBytes = hashSizeInBits / 8

 ' Make sure that the specified hash value is long enough.

Paper ID: SUB152919 739

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 If (hashWithSaltBytes.Length < hashSizeInBytes) Then

 VerifyHash = False

 End If

 ' Allocate array to hold original salt bytes retrieved from hash.

 Dim saltBytes() As Byte = New Byte(hashWithSaltBytes.Length - _

 hashSizeInBytes - 1) {}

 ' Copy salt from the end of the hash to the new array.

 Dim I As Integer

 For I = 0 To saltBytes.Length - 1

 saltBytes(I) = hashWithSaltBytes(hashSizeInBytes + I)

 Next I

 ' Compute a new hash string.

 Dim expectedHashString As String

 expectedHashString = ComputeHash(plainText, saltBytes)

 ' If the computed hash matches the specified hash,

 ' the plain text value must be correct.

 VerifyHash = (hashValue = expectedHashString)

 End Function

End Module

Public Class frmMenu

 Private Sub btnHash_Click(sender As System.Object, e As System.EventArgs) Handles btnHash.Click

 Dim hash As New frmHasher

 hash.ShowDialog()

 End Sub

 Private Sub btnConfirm_Click(sender As System.Object, e As System.EventArgs) Handles btnConfirm.Click

 Dim confirm As New frmConfirm

 confirm.ShowDialog()

 End Sub

 Private Sub frmMenu_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load

 End Sub

End Class

Imports System

Imports System.Text

Imports System.Security.Cryptography

Public Class frmHasher

 Dim pwdHash As String

 Private Sub btnHash_Click(sender As System.Object, e As System.EventArgs) Handles btnHash.Click

 'Create hash using SHA256 algorithm.

 pwdHash = ComputeHash(txtWord.Text, Nothing)

 lblHashed.Text = pwdHash

 SaltedHash = pwdHash

 End Sub

 Private Sub frmHasher_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load

 End Sub

End Class

Paper ID: SUB152919 740

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Public Class frmConfirm

Private Sub Button1_Click(sender As System.Object, e As System.EventArgs) Handles Button1.Click

 'very the hash return true or false

 'based on the SHA256 algorithm.

 Dim plainword As String

 plainword = VerifyHash(txtWord2.Text, SaltedHash)

 lblPlain.Text = plainword

 End Sub

 Private Sub frmConfirm_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load

 End Sub

End Class

Paper ID: SUB152919 741

