Severity of Diarrhea and Dehydration in Children Under 5 Years

Bashkim Nezaj¹, Gjeorgjina Kuli-Lito²

¹University Hospital Centre "Mother Theresa", Tirana, Albania
²Institute of Public Health, Tirana, Albania

Abstract: The aim of this study was to assess the severity and type of dehydration in children with diarrhea who were admitted hospital. This is a retrospective study. A total of 345 cases of acute diarrhea mainly in children below 5 years of age admitted at tertiary care Pediatric hospital in University Center “Mother Theresa” over the period 2011-2013 were included in the study. Medical history, diarrhea symptoms, treatment prior to hospitalization and demographics were obtained from medical records. Dehydration degree was assessed and all patients were treated with intravenous fluids. 345 (99%) of children had a moderate dehydration whereas 3 (1%) children who were unable to drink/swallow had a severe dehydration. Upon admission, 137 (39.7%) patients had isotonic dehydration, 201 (58.3%) hypotonic and 6 (5%) had mild hypertonic dehydration. The mean Na value upon admission was 133.7 (±5.4) mmol/l whereas with hydration the mean value increased to 136.8 (±3.2) mmol/l (p<0.01). The management of dehydration, its prevention and it is very important in the management of diarrheal diseases, irrespective of etiology.

Keywords: diarrhea, severity, children, dehydration, fluids

1. Introduction

Gastroenteritis is one of the most common medical conditions seen by pediatricians, accounting for over 150,000 hospitalizations per year or approximately 10% of all hospital admissions in children <5 years of age in many countries (1). Patients with diarrhea should first be assessed quickly to determine the nature and pattern of diarrhea, the degree of dehydration (no signs of dehydration, some or severe dehydration), and the presence of any other comorbidities and malnutrition, in order that appropriate treatment can be initiated without delay. Although most patients with infectious diarrhea can be treated at an outpatient clinic or at home, some patients will still need hospitalization, mainly for intravenous rehydration (2). The three essential parts in the effective clinical management of acute diarrhea are: prevention of dehydration, if the patient is not already dehydrated; prompt rehydration therapy by oral or intravenous fluids when dehydration is present, followed by maintenance therapy; and maintaining the patient’s usual diet during and after diarrhea. The common approach to intravenous fluid therapy for these children has been to administer sodium chloride (NaCl) to make up for the losses plus and maintenance if patients are unable to get oral rehydration solution (3). The majority of patients with gastroenteritis have isotonic dehydration. In these patients, the volume deficit is primarily extracellular. Hypotonic maintenance fluids are not appropriate for patients with increased arginine vasopressin (AVP) as this will result in hyponatremia due to free water retention (4). A better strategy in the management of children with gastroenteritis would be to administer a continuous infusion with a sodium concentration of 0.9% NaCl following intensive therapy. 0.9% would not only serve as prophylaxis against hyponatremia, but it yields better results than hypotonic fluids in enlarging the extracellular volume and correcting the volume deficit faster. 0.9% NaCl could be discontinued in favor of a hypotonic solution once the patient is deemed to be volume saturated, as evidenced by good peripheral perfusion and urine output, and intravenous fluid could be stopped altogether when oral fluids are taken well. 0.9% would seem to be the best choice to correct volume depletion and prevent the development of dysnatremia in patients with gastroenteritis, but it is not without risk (5). Hypertonic dehydration can develop in patients with gastroenteritis treated with 0.9% NaCl from either large gastrointestinal water losses or increased water losses from high fever (6). These high-risk patients should be closely monitored, and measures to prevent hypernatremia should be taken. 0.9% NaCl should only be used until the patient is assessed to be volume saturated, at which point hypotonic fluids could be used (7). Electrolytes should be monitored at least daily in these high-risk patients, and isotonic fluid should be discontinued if the patient is hypernatremic (sodium>144 mEq/L). Under normal circumstances, serum sodium (Na) concentration is tightly controlled by osmoreceptors interacting with the thirst center and the vasopressin–kidney axis (8). The aim of this study was to assess the severity and type of dehydration in children with diarrhea who were admitted hospital.

2. Material and Methods

This is a retrospective study. A total of 345 cases with diagnosis of acute diarrhea and dehydration mainly in children below 5 years of age admitted at tertiary care Pediatric Hospital in University Center “Mother Theresa” over the period 2011-2013 were included in the study. Medical history, diarrhea symptoms, treatment prior to hospitalization and demographics were obtained from medical records. None of the patients had renal disease, endocrinopathy, heart failure or central nervous system disorders. Weight and body mass index (BMI) measurements were available for all patients. Also, patients were weighted on the following day. Patients who had at least two serum Na measurements, one on admission and the second between 4 and 24h. The severity of dehydration was assessed according to standard clinical methods (9), and if...
The mean age of children with diarrhea was 20.3 ±28.8 (SD) months. One hundred ninety-one children (55.4%) were boys. 181 (52.5%) were younger than 12 months of age, 132 (38.3%) were between 1 and 4 years of age and 32 (9.3%) were elder than 4yrs of age. The vast majority of children (61%) had 4-5 watery episodes of diarrhea. The degree of dehydration was clinically assessed according to the presence of symptoms and signs that reflect the magnitude of fluid loss, which in turn forms the basis for estimating the amount of fluid to be administered (table 1). Clinical objective examination revealed that all (100%) patients had dry mucosa and reduced turgor. 345 (99%) of children had a moderate dehydration whereas 3 (1%) children who were unable to drink/swallow had a severe dehydration. Many patients had saline boluses before the hydration status was assessed by measuring blood chemistry parameters because of vomiting and watery diarrhea (13). Upon admission, 39.7% patients had isotonic dehydration, 58.3% were mildly hyponatremic and 5% had mild hypernatremia which improved due to fluid therapy. The mean Na value upon admission was 133.7 (±5.4) mmol/l whereas with hydration the mean value increased to 136.8 (±3.2) mmol/l. Also, other blood chemistry parameters Cl, Asotemia and Creatinine were restored to normal values as well as the weight of patients (14).

3. Results and Discussion

The treatment should focus on the resuscitation requirements, current deficit, ongoing losses, and maintenance requirements, because the volume, composition, and rate of replacement differ for each (11). During the treatment it is essential the ongoing monitoring of vital signs, clinical appearance, urine output, weight, and serum electrolyte levels. In our study all patients with diarrhea are treated with IV fluid and rapid replacement protocols at various rates for 24–48 h. Estimation of the severity of dehydration when it is mild to moderate can vary between observers (12). In our study 99% children had dry mucosa and reduced turgor showing a moderate dehydration whereas 1% of them who were unable to drink/swallow had a severe dehydration. Many patients had saline boluses before the hydration status was assessed by measuring blood chemistry parameters because of vomiting and watery diarrhea (13). Upon admission, 39.7% patients had isotonic dehydration, 58.3% were mildly hyponatremic and 5% had mild hypernatremia which improved due to fluid therapy. The mean Na value upon admission was 133.7 (±5.4) mmol/l whereas with hydration the mean value increased to 136.8 (±3.2) mmol/l. Also, other blood chemistry parameters Cl, Asotemia and Creatinine were restored to normal values as well as the weight of patients (14).

4. Conclusion

For better management of diarrhea in children, every treatment center can formulate their own treatment protocol according to their needs, determined on the basis of epidemiologic knowledge of the disease and socio-cultural background, although most centers in developing countries follow WHO recommended treatment guidelines.

References


Table 1: Clinical assessment of dehydration, as provided in the World Health Organization treatment guidelines

<table>
<thead>
<tr>
<th>Diagnostic criteria</th>
<th>No dehydration</th>
<th>Moderate dehydration</th>
<th>Severe dehydration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signs/symptoms</td>
<td>No significant signs/symptoms</td>
<td>At least two signs/symptoms, including one key sign (*) present</td>
<td>Criteria for some dehydration plus one of these key (*) signs/symptoms present</td>
</tr>
<tr>
<td>Condition</td>
<td>Normal</td>
<td>Irritable/less</td>
<td></td>
</tr>
<tr>
<td>Eyes</td>
<td>Normal</td>
<td>Sunken</td>
<td>Lethargic/comatose*</td>
</tr>
<tr>
<td>Mucosa</td>
<td>Normal</td>
<td>Dry</td>
<td></td>
</tr>
<tr>
<td>Thirst</td>
<td>Normal</td>
<td>Thirsty*</td>
<td>Unable to drink/swallow</td>
</tr>
<tr>
<td>Skin</td>
<td>turgor</td>
<td>Reduced*</td>
<td></td>
</tr>
<tr>
<td>Radial pulse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bodyweight loss</td>
<td>0–4%</td>
<td>5–9%</td>
<td>≥10%</td>
</tr>
</tbody>
</table>

Table 2: Values of serum chemistry parameters upon admission and with hydration

<table>
<thead>
<tr>
<th>Blood chemistry parameters</th>
<th>Upon admission M (SD)</th>
<th>With hydration M (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na (mmol/l)</td>
<td>133.7 (±5.4)</td>
<td>136.8 (±3.2)</td>
</tr>
<tr>
<td>K (mmol/l)</td>
<td>3.9 (±3.6)</td>
<td>4.1 (±0.9)</td>
</tr>
<tr>
<td>Cl₂ (mmol/l)</td>
<td>104.8 (±5.6)</td>
<td>107.9 (±5.7)</td>
</tr>
<tr>
<td>Asotemia (mg/dl)</td>
<td>18.9 (±5.4)</td>
<td>8.9 (±3.7)</td>
</tr>
<tr>
<td>Creatinine (mg/dl)</td>
<td>0.70 (±3.4)</td>
<td>0.36 (±0.13)</td>
</tr>
</tbody>
</table>

Figure 1: Type of dehydration

Author Profile

Bashkim Nezaj MD, Pediatrician, Pediatric Hospital, University Hospital Center “Mother Theresa”, Tirana, Albania

Gjeorgjina Kuli-Lito, PhD, Professor, Researcher, Lecturer, University Hospital Center “Mother Theresa”, Tirana, Albania

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

1075