
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Automation of Mutated Cross Site Scripting

Anchal Tiwari
1
, J. Jeysree

2

1Information Security and Cyber Forensics, Masters in Technology, SRM University Chennai, India

2Department of Information Technology, Assistant Professor, SRM University Chennai, India

Abstract: Cross-Site Scripting (XSS) attacks are a type of injection, in which malicious scripts are injected into otherwise benign and

trusted web sites. XSS attacks occur when an attacker uses a web application to send malicious code, generally in the form of a browser

side script, to a different end user. Flaws that allow these attacks to succeed are quite widespread and occur anywhere a web application

uses input from a user within the output it generates without validating or encoding it. In browsers Mutation event occur when there is a

change in the DOM Structure of the browsers. There are various ways in which DOM structure could be changed among which

innerHTML property is discussed specifically. mXSS is a new class of XSS vectors, the class of mutation-based XSS (mXSS) vectors,

which may occur in innerHTML andrelated properties. mXSS affects all three major browserfamilies: IE, Firefox, and Chrome.mXSS

could be placed in major browser families and effecting major web applications. In this paper we apply the idea of mutation-based

testing technique to generate adequate test data sets for testing XSSVs. Our work addresses XSSVs related to web-applications that use

PHP and JavaScript code to generate dynamic HTML contents. Finally there would be the development of an automatic tool which

would generate mutants automatically, automatically testing the web application and finally giving the output.

Keywords: Cross Site Scripting, Mutation in DOM, innerHTML propriety

1. Introduction

Cross Site Scripting (XSS) is one of the worst vulnerabilities

in web-based applications XSS Vulnerabilities (XSSVs)

involves the generation of dynamic Hyper Text Markup

Language (HTML) contents (i.e., attributes of tags) with

invalidated inputs. XSS attacks exploit the vulnerabilities

through inputs that might contain HTML tags, JavaScript

code, and so on. These inputs are interpreted by browsers

while rendering web pages. As a result, the intended

behaviour of generated web pages alters through visible (e.g

Creation of pop-up windows) and invisible (e.g., cookie

bypassing) symptoms. In biological terms mutationis a

permanent change of the nucleotide sequence of the genome

of an organism. In DOM Structure Mutation is an ownership

kind of optimization of HTML code implemented differently

in each of major browsers. Mutation events occur in

following ways:

DOMSubtreeModified

DOMNodeInserted

DOMNodeRemoved

DOMNodeRemovedFromDocument

DOMNodeInsertedIntoDocument

DOMAttrModified

DOMCharacterDataModified

All these modification is done by using various functions

one of them is innerHTML. innerHTML is a DOM node's

property that gets or sets the inner HTML code of an HTML

element. It is commonly used in JavaScript to dynamically

change or read from a page. Server- and client-side XSS

filters share the assumption that their HTML output and the

browser-rendered HTML content are mostly identical. In

this paper, we show how this premise is false for important

classes of web applications that use the inner HTML

property to process user-contributed content. Instead, this

very content is mutated by the browser, such that a harmless

string that passes nearly all of the deployed XSS filters is

subsequently transformed into an active XSS attack vector

by the browser layout engine itself.

The information flow of an mXSS attack is shown in Figure

1. The attacker carefully prepares an HTML or XML

formatted string and injects it into a web application.

Figure 1: Information flow in an mXSS attack.

This string will be altered or even rewritten in a server-side

XSS filtered, and will then be passed to the browser. If the

browser contains a client-side XSS filtered, the string will be

checked again. At this point, the string is still harmless and

cannot be used to execute an XSS attack. However, as soon

as this string is inserted into the browser‟s DOM by using

the innerHTML property, the browser will mutate the string.

This mutation is highly unpredictable since it is not part of

the specified innerHTML handling, but is a proprietary

optimization of HTML code implemented directly in each of

the major browser families. The mutated string now contains

a valid XSS vector, and the attack will be executed on

rendering of the new DOM element. Both server and client

side filters were unable to detect this attack because the

string scanned in these filters did not contain any executable

code.

A web application is vulnerable if it inserts user-contributed

input with the help of innerHTML or related properties into

the DOM of the browser. It is difficult to statistically

evaluate the number of websites affected by mutated xss,

since automated testing fails to reliably detect all these

Paper ID: SUB152876 1274

file:///D:\IJSR%20Website\www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://developer.mozilla.org/en/DOM/element.innerHTML

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

attack prerequisites. If innerHTMLis only used to insert

trusted code from the web application itself into the DOM, it

is not vulnerable. However, it can be stated that Problem

Descriptionamongst the 10.000 most popular web pages,

roughly one third uses the innerHTML property, and about

65% use Java- Script libraries like jQuery, who abet mXSS

attacks by using the innerHTMLproperty instead of the

corresponding DOM methods.

2. Problem Description

2.1 The innerHTML Property

The use of innerHTMLand outerHTMLis supported by each

and every one of the commonly used browsers in the present

landscape. Consequently, the W3C started a specification

draft to unify innerHTML rendering behaviours across

browser implementations. An HTML element's

innerHTMLproperty deals with creating HTML content from

arbitrarily formatted strings on write access on the one hand,

and with serializing HTML DOM nodes into strings on read

access on the other.

Syntax to get innerHTML

var content = element.innerHTML; /* To get the inner

HTML of an element */

Where,content contains the serialized HTML code

describing all of the element's descendants.

Syntax to set innerHTML

element.innerHTML = content; /* To set the inner HTML of

an element */

To use innerHTML, the DOM interface of element is

enhanced with an innerHTML attribute/property. Setting of

this attribute can occur via the element.innerHTML= value

syntax, and in this case the attribute will be evaluated

immediately. A typical usage example of innerHTML is

shown in Listing 1: when the HTML document is first

rendered, the <p> element contains the "First text" text node.

When the anchor element is clicked, the content of the <p>

element is replaced by the "New second text."

HTML formatted string.

Example on inner HTML usage

<script type =" text / javascript ">

var new = "New second <\/b> text .";

function Change ()

{

document .all. myPar .innerHTML = new;

}

</script >

<p id =" myPar "> First text .</p>

Change text above !

Browser fixes code before adding it to the DOM! This can

be useful if the programmer wrote incorrect code because

the browser fixes the code first, but it‟s also very useful for

attackers

2.2 Attack Vector and Attack body

In general, an mXSS attack can be separated into the attack

vector and the attack body an attack body is the main code

for executing the intention (e.g., it can invoke JavaScript

interpreter) after exploiting a vulnerability successfully, and

it is often applied by obfuscation techniques beyond the

detections. An attack vector is the medium for introducing

the attack body. If imagining a XSS exploit as a missile, the

attack vector is like the guided device of the missile, and the

attack body is like the warheadof the missile. Hence, an

attacker can promote the attack body to be interpreted

for malicious intension by using the right or efficient

attack vectors.

Table 1: The samples of mutated XSS attack (The attack

vectors are separated by commas, and the attack bodies are

denoted as italic.)

Mutated XSS Attack Samples

1. ”>,alert(123)<iframe/src=http://xssed.com>alert(123)<
/scrihttp://pt>alert(123)

2. ”>,‟></div>alert(123)<input><script>alert(123)</scri

pt></marquee>alert(

123)”>

3. >”>,</p>alert(123)<marquee><script>alert(123)</scri

pt></title>alert(123)

4. ”/>,</ScRiPt>alert(123)<title><script>alert(123)</scri

pt></SCRIPT>alert(123)

5. >”>,</form>alert(123)<script>alert(123)</script>
</input>alert(123)” t type=”hidden” />

3. Work Around Problem

Following are the example which proves the existence of

mutation and confirms the possibility of mXSS attacks. This

section describe a set of innerHTML-based attacks it is

discovered during the research on DOM mutation and string

transformation. The code is presented purposefully

appearing as sane and inactive markup before the

transformation occurs, while it then becomes an active XSS

vector executing the example method xss() after that said

transformation. This way server and client-side XSS filters

are being elegantly bypassed.

Examples:

4. Vulnerable code:

.innerHTML= „ ..<imgclass=“INPUT“>1234 ..“;

After fixing:

<imgclass=„input“>1234

5. Attacker input:

´´src=x onerror=alert(1)

The generated code:

<imgclass=“´´src=x onerror=alert(1)“>1234

6. The generated code:

<imgclass=“´´src=x onerror=alert (1)“>1234

Now the code gets fixedbefore it is added to the DOM by

.innerHTML. Browser notice that there are already ´´to

enclose the class, thus ““ can be removed!

Paper ID: SUB152876 1275

file:///D:\IJSR%20Website\www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The fixed code:

<imgclass=´´src=xonerror=alert(1) >1234

It„s possible to execute JS-code even if “getsencoded.

Figure 2: Proof of concept for mXSS attack

7. innerHTML-access to an unknown element causes

mutation and unsolicited JavaScript excution

<!-- Attacker Input -->

<article xmlns ="urn:imgsrc=x onerror=xss()//" >123

<!-- Browser Output -->

<imgsrc=x onerror=xss()//:article xmlns="urn:imgsrc=x

onerror=xss()//" >123 </ imgsrc=x onerror =xss () //: article

>

The result of this structural mutation and the pseudo-

namespace allowing white-space is an injection point. It is

through this point that an attacker can simply abuse the fact

that an attribute value is being rendered despite its

malformed nature, consequently smuggling arbitrary HTML

into the DOM and executing JavaScript.

4. Attack Surface

The attacks outlined in this paper target the client-side web

application components, e.g. JavaScript code, that use the

innerHTMLproperty to perform dynamic updates to the

content of the page. Rich text editors, web email clients,

dynamic content management systems and components that

pre-load resources constitute the examples of such features.

In this section the conditions under which a webapplication

is vulnerable is described in detail. The basic conditions for

a mutation event to occur are the serialization and

deserialization of data. As mentioned earlier, mutation in the

serialization of the DOM-tree occurs when the

innerHTMLproperty of a DOM-node is accessed.

Subsequently, when the mutated content is parsed back into

a DOM-tree, e.g. when assigned to innerHTMLor written to

the document using document.write, the mutation is

activated.

In order for an attacker to exploit such a mutation event, it

must take place on the attacker supplied data. This condition

makes it difficult to statistically estimate the number of

vulnerable websites, however, the attack surface can be

examined through an evaluation of the number of websites

using such vulnerable code patterns.

vulnerable code patterns

// Native JavaScript / DOM code

a. innerHTML = b. innerHTML ;

a. innerHTML += 'additional content ';

a. insertAdjacentHTML (' beforebegin ', b.

innerHTML);document . write (a. innerHTML);

// Library code

$(element). html (' additional content ');

Note though that almost all applications applied with an

editable HTML area are prone to being vulnerable.

5. Automation

Automation technique could be performed by observing the

client side code and then searching for the DOM rendering

elements specifically for innerHTML. The code will be

crawling the website and fetching the vulnerable

innerHTML prosperity and attacking the input field with the

mutants. The successful attack will be reported to the

tester/attacker.

6. Future Work

As the future progress of this research this tool could be

intergrated with the modern web vulnerability testing tools.

Which would ensure total security with this novel attack.

7. Conclusion

The paper describes a novel attack technique based on a

problematic and mostly undocumented browser behaviour

that has been in existence for more than ten years initially

introduced with Internet Explorer 4 and adopted by other

browser vendors afterwards.The discussed browser

behaviour results in a widelyusable technique for conducting

XSS attacks against applications otherwise immune to

HTML and JavaScript injections. These internal browser

features transparently convert benign markup, so that it

becomes an XSS attack vector once certain DOM properties

such as innerHTMLand outerHTMLare being accessed or

other DOM operations are being performed. As this kind of

attack is labelled as Mutation based XSS (mXSS), the paper

is dedicated thoroughly by introducing and discussing this

very attack.Subsequently, it is analysedthat the attack

surface and an action plan is proposed for mitigating the

dangers via several measurements and strategies for web

applications, browsers and users, while server- as well as

client-side XSS filters have become highly skilled protection

tools to cover and mitigate various attack scenarios,

mXSSattacks pose a problem that has yet to be overcome by

the majority of the existing implementations. A string

mutation occurring during the communication between the

single layers of the communication stack from browser to

web application and back is highly problematic. Given its

place and time of occurrence, it cannot be predicted without

detailedcase analysis.

References

[1] Mario Heiderich “mXSS Attacks: Attacking well

secured Web-Applications by using

innerHTMLMutations”

[2] Yi-Hsun Wang “Structural Learning of Attack Vectors

for Generating Mutated XSS Attacks”

[3] Hossain Shahriar and Mohammad Zulkernine ”MUTEC:

Mutation-based Testing of Cross Site Scripting”

[4] Ben Stock “Precise Client-side Protection against

DOM-based Cross-Site Scripting” [Online].

Paper ID: SUB152876 1276

file:///D:\IJSR%20Website\www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 4, April 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Available:https://www.usenix.org/conference/usenixsec

urity14/technical sessions/presentation/stock

[5] Andrea Avancini, Mariano Ceccato”Security Testing of

Web Applications: A Search Based Approach for Cross-

Site Scripting Vulnerabilities”

Paper ID: SUB152876 1277

file:///D:\IJSR%20Website\www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

