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Abstract: In this paper, we propose a new method of image segmentation, named SLICAP, which combines the simple linear iterative 

clustering (SLIC) method with the affinity propagation (AP) clustering algorithm. First, the SLICAP technique uses the SLIC superpixel 

algorithm to form an over-segmentation of an image. Then, a similarity is constructed based on the features of superpixels. Finally, the 

AP algorithm clusters these superpixels with the similarities obtained. We compose three similarities attempt to find the most suitable one 

for SLICAP. Compared with the standard Ncuts method for image segmentation, the unsupervised SLICAP approach is relatively simple 

and fast, and there is no need to determine the number of targets. The experiments on the Berkeley segmentation database show that the 

image segmentation results produced by the SLICAP method are well consistent with the human visual perception. Quantitively, the 

SLICAP method outperforms other classical segmentation algorithms with the boundary-based and region-based criteria, including 

F-measure, probabilistic rand index, variation of information and boundary displacement error. 
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1. Introduction 
 

Image segmentation is a fundamental issue in the field of 

computer vision. It has been widely studied for the problems 

of image processing and pattern recognition. Segmentation is 

usually performed by identifying the differences between 

interesting and uninteresting objects in an image. As a result, it 

divides the image into different sets that are composed of 

homogeneous regions with common properties. Based on the 

basic definition, in this paper, we propose an approach to 

obtain a simple and fast approach of image segmentation 

based on the concept of superpixels [1]. 
 
Superpixel is generally defined as a small group of pixels with 
homogeneous color. It has been extensively used in various 
scenarios of computer vision, such as image segmentation and 
object recognition. Compared to the traditional pixel 
representation in image, the superpixel representation greatly 
reduces the number of image primitives and thus improves the 
representative efficiency [1]. Moreover, it is convenient and 
effective to compute the region-based visual features with the 
superpixels, which will simplify the succedent vision tasks like 
object recognition. Furthermore, the regions extracted by the 
superpixel over-segmentation usually form a more compact 
representation of an image than the original pixel grid [2]. To 
further obtain more precise result and shorter running time of 
image segmentation, an improved variant of superpixel named 
simple linear iterative clustering (SLIC) superpixel [3] is 
proposed, which is constructed in an efficient way as a 
pretreatment of image segmentation or object recognition [4]. 
It has achieved a speed up of 10~20 times with a single video 
card experimentally, which makes superpixel segmentation 
methods appliable in real-time [5].  
 
In this study, we use the SLIC superpixel method [3] to 
generate superpixels, which not only adhere to object 
boundaries but also have a regular size. Then, to merge the 
superpixels with similar properties efficiently, we adopt an 
affinity propagation (AP) clustering in the image segmentation 
process. As an input of AP, the similarity of superpixels is a 
bridge between SLIC and AP. The AP algorithm is originally 
introduced to analyze complex data sets termed “affinity 

propagation”, and has been found showing a lower error than 
other clustering methods [6] [7]. In the operation process, the 
AP algorithm simultaneously considers all superpixels as 
potential exemplars, and exchanges the real-valued messages 
between similarities of superpixels. Clusters are then 
constituted by assigning each superpixel to its most similar 
exemplar. Therefore, the main advantages of the AP algorithm 
are reflected in its processing speed when handling the data 
with a lot of classes. Additionally, it can be applied to solve the 
problems that the similarities are not symmetric. Most studies 
have demonstrated that the AP algorithm is more effective 
than the K-means algorithm [3]. For example, the AP 
algorithm cost only five minutes to accurately find a small 
amount of pictures which can explain all kinds of handwriting 
type from thousands of handwritten postal code pictures. By 
contrast, the K-means algorithm will take 500 million years to 
achieve the same precision [6]. 
 
However, there has no a general segmentation method for the 
visual patterns in a natural image with broad diversity and 
ambiguity so far. Specifically, despite the sustained research 
effort for several decades, bottom-up image segmentation still 
remains challenge such that the segmentation result can well 
match with human perception. We are then motivated to carry 
out research on image segmentation by using the 
superpixel-based technique. In fact, it is difficult to achieve a 
satisfied segmentation result in real time with the most existing 
segmentation algorithms. To address this problem, we design a 
novel method by combining the superpixels and the AP 
algorithm to realize the image segmentation with high running 
speed. We expect that the proposed approach is applicable for 
real-time image segmentation in practice. 
 
The remainder of the paper is organized in the following 
manner: In Section 2, an analytical framework of the proposed 
method is first summarized. Then, the concepts of SLIC 
superpixels and AP clustering are described. And a 
comparative analysis is given. Section 3 presents several 
simulation experiments conducted on the Berkeley 
segmentation database. The results are shown and discussed 
accordingly in Section 4. Finally, Section 5 concludes the 
paper. 
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Figure 1: The procedure of SLICAP. (a) Original image; (b) 

SLIC superpixels; (c) Cluster superpixels using AP. Clustering 

center data points represent "exemplar", where different colors 

mean different clusters; (d) Boundary result of SLICAP; (e) 

Region result of SLICAP. 

 

2. Methods 
 

2.1 Analytical Framework of SLICAP Algorithm 

 

The proposed SLICAP method is formulated by a combination 

of the SLIC superpixels algorithm and the AP clustering 

algorithm. Specifically, the superpixels are generated by SLIC 

firstly. Then a similarity matrix is constructed. And finally, 

superpixels are clustered by using the AP algorithm with the 

similarity matrix. Through a practical example of image 

segmentation, we show the analytical framework of the 

SLICAP method in Fig. 1. 
 
SLIC has a primary parameter that controls the number of 
superpixels. An example of using the SLIC superpixel method 
to generate superpixels is shown in Fig. 1(b). Here we set the 
number of superpixels K  as 600. The advantage of the SLIC 
method is that it provides a similarity matrix for AP clustering 
with low computational complexity. Besides, it well adheres to 
image boundaries [3]. 
 
The superpixels are then clustered by AP. The advantage of 
AP is that the number of exemplars does not have to be 
specified beforehand. Instead, an appropriate number of 
exemplars emerges from the message passing method [6] and 
only depends on the input exemplar preferences. It is more 
suitable for unsupervised segmentation than the K-means 
clustering. In Fig. 1(c), the superpixels are merged in five 
regions automatically, and each region has a center (so-called 
“exemplar” in AP). The boundary is yielded between different 
parts, as illustrated in Fig. 1(d). The resulting segmented 
regions are delineated in Fig. 1(e), where the color of each 
region is the mean of the corresponding superpixels. We see 
that the oar is not continuous. This is due to that the number of 
superpixels is not sufficiently large. On the other hand, 
increased number of superpixles needs higher complexity. We 
thus seek a tradeoff between the segmentation performance 
and its complexity. 
 

2.2 Similarity Matrix Construction 

 
In this subsection, we construct a similarity matrix in CIELAB 
color space that keeps consistent with the human visual 
perception. This CIELAB color space is based on the human 
visual system. It includes some colors that our physical world 
can not recreate. With the SLIC algorithm, we calculate the 
mean vector TbaL ]  [  of all the superpixels, where L  
represents brightness, and a  and b  represent the change from 
red to green and from blue to yellow, respectively. For the 
purpose of comparison, three similarity matrices are designed 
as follows: 
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where i  and k  denote the indices of superpixels, and ),( kis  

denotes the element in the ith row and the kth column of a 

similarity matrix. The similarity ),( kis  means the preference 

that data point i  is chosen as an exemplar [6]. Besides, Lw , 

aw , bw  are the weights of the three channels. They keep 

balance so as to be consistent with human perception.   is the 

standard deviation of color distribution of superpixels. 's  

remains the off-diagonal elements of s . The quantity 

colorradius adjusts the number of clusters, and if its value is 

low, the number of targets would increase, which leads to more 

detailed segmentation results. The default value of colorradius 

is set as 20. 
 
We see that the Euclidean distance is applied to similarity A. 
On the other hand, similarity B and similarity C include the 
standard deviations of the color distribution and take the 
exponential form. We will find in the experiment section that 
the frame based on the Euclidean distance (i.e., similarity A) 
delivers better performance for the AP clustering algorithm 
than the other two similarities. Also, the figures in Fig. 1 are 
produced by adopting similarity A. 
 
The AP algorithm takes a collection of real-valued similarities 
between superpixels as an input. The similarity matrix of AP 
means that, in terms of Euclidean distance, two superpixels in 
a similarity matrix are more similar if their distance is more 
close to zero. Otherwise, they are more dissimilar if the value 
is more far from zero. 

 

3. Experiments  
 

All the experiments are conducted in the same running 

environment of computer, in which CPU is Intel(R) core(TM) 

2, 2.13 GHz With 2G memory. Experiment platform and 

software are Linux 3.2.0-67-generic and MATLAB 7.14.0 

(R2012a), respectively. The segmentation results of images 

are assessed by the boundary-based and region-based criteria. 
 
We compare our algorithm with a classical methods, i.e., 
normalized cuts [8] (Ncuts), as well as SLIC-K-means 
(SLICKM). SLICKM replaces the AP clustering with K- 
means [9]. Likewise, we use the Euclidean distance and the 
CIELAB color space in SLICKM. In our experiment, the 
related parameters are set as follows. colorradius  
 
1) SLICAP: We set the number of superpixels K  as 600, the 
weight factor m  between color and spatial differences as 20, 

Lw , aw , bw and colorradius  as 3, 10, 10, and 20, 
respectively. The superpixels are clustered by AP with default 
parameters.  
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2) Ncuts: The number of blocks is equal to 30 for the best 
performance.  
 

3) SLICKM: K  and m  are same with SLICAP. The setting of 
the number of 

segmentation sections follows “Nseg.txt” in [10]. Specifically, if the segmentation number is set as N  in “Nseg.txt”, then the 
clustering number of K-means in SLICKM is limited in a interval near N  and 
 

Figure 2: Segmentation examples on the Berkeley Segmentation Database. (a) Input image; (b) Ncuts; (c) Boundary result of 
SLICKM (average); (d) Mean color region result of SLICKM (average); (e) Boundary result of SLICAP (using similarity 

A); (f) Mean color region result of SLICAP (using similarity A) 
 

chosen randomly within this interval. SLICKM is performed 
200 times on the whole dataset and the best result is shown in 
the experiments. 
 

3.1 Database 

 

The image segmentation algorithms are evaluated on the 

Berkeley Segmentation Database (BSD) [11], which consists 

of 300 natural images. In order to obtain a fair assessment of 

the results from the superpixels-based image segmentation, 

100 pictures of smaller number of targets from BSD are 

randomly selected to construct a sub-database. Besides, BSD 

offers a benchmark that produces a score for an algorithm, 

which will be discussed in the following section. 

 

3.2 Boundary and Region Quantitative Evaluations 

 

In order to compare the competing solutions, boundary and 

region quantitative evaluations are used. For boundary 

quantitative evaluation, the BSD [12] Precision-Recall 

framework is employed, where “Precision” and “Recall” are 

calculated and then used to get the F-measure. For region 

quantitative evaluation, the following measures are used: 

Probabilistic Rand Index (PRI) [13] [14], Variation of 

Information (VoI) [15] [16], and Boundary Displacement 

Error (BDE) [17] [18]. PRI, a variant of the Rand Index, 

counts the number of pixel pairs whose labels in the 

segmentation result are consistent with those in the ground 

truth. VoI was introduced for the purpose of clustering 

comparison. BDE measures the average displacement of the 

region boundaries between the segmentation result and the 

ground truth. In short, a segmentation result is better if it has a 

higher PRI, a lower VoI, and a lower BDE. 

 

4. Results and Discussion 
 

Some segmentation examples are shown in Fig. 2, where we 

adopt the optimal dataset scale (ODS) instead of the optimal 

scale per image (OIS). Comparing Fig. 2(b) and (c) with (e), 

we see that SLICAP well adheres to object boundaries and 

consists with human perception. It is observed from Fig. 2(d) 

and (f) that SLICAP produces a more appropriate number of 

targets automatically. The reason is that the appropriate 

number of exemplars is obtained by using the AP algorithm. 

So SLICAP is a suitable algorithm for unsupervised 

segmentation. 
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4.1 Performance Evaluation 

 

The boundary performance evaluation based on the 

F-measure of the above mentioned methods is reported in 

Table 1. We see that the F-measure of SLICAP using 

similarity A exceeds 0.65, suggesting that SLICAP well 

matches object boundaries. Although the performance of 

SLICAP using similarity B is not as outstanding as that of 

SLICAP using similarity A, it outperforms Ncuts and 

SLICKM. In addition, the range of similarity matrix of 

SLICAP (similarity C) is lower than others, which may inflect 

its performance. Note that, in this paper, we use the “hard” 

boundary representation as the segmentation criterion instead 

of the “soft” boundary representation. Therefore, the results 

of obtained boundaries are not optimized in terms of the 

benchmark of BSD. 

 

Table 1: Boundary performance evaluation based on the 

F-measure of SLICAP against other methods on BSD 

Method Mean cost 

time 

Mean cost time for 

clustering 

Ncuts 91.3105 — 

SLICKM (average) 11.1789 0.2008 

SLICAP (similarity A) 21.4791 7.7685 

 

The region performance evaluation based on PRI, VoI, and 

BDE is shown in Table 2. In terms of PRI, SLICAP using 

similarity A is close with SLICAP using similarity B, and they 

are better than the other methods. In terms of VoI and BDE, 

SLICAP using similarity A outperforms the other 

segmentation algorithms consistently. Compared with 

SLICAP using similarity A, SLICAP using similarity B 

demonstrates competitive performance. As a result, we see 

that the Euclidean distance is more appropriate for the AP 

clustering in this framework. 

 

Table 2: Region performance evaluation based on PRI, VoI, 

and BDE of SLICAP against other methods on BSD 
Method F-measure 

Ncuts 0.5893 

SLICKM (average) 0.5831 

SLICKM (best of 200) 0.6312 

SLICAP (similarity A) 0.6570 

SLICAP (similarity B) 0.6313 

SLICAP (similarity C) 0.5988 

 

4.1 Running Time 

 

The mean cost time of the three methods for per image on 

BSD is shown in Table 3. Since the clustering procedure is 

not required for Ncuts, there is a dash at the corresponding 

position. The cost time of SLICAP (similarity B) and 

SLICAP (similarity C) is close with that of 

SLICAP(similarity A), and the cost time of SLICKM (best of 

200) is close with that of SLICKM (average). They are thus 

not listed in Table 3. 

 

In Table 3, we see that the mean cost time of SLICAP 

(similarity A) for clustering per image is more than that of 

SLICKM (average). However, thinking about that SLICKM 

(best of 200) needs to be run two hundred times, the total time 

consumed by SLICKM (best of 200) is actually much more 

than that of SLICAP (similarity A). On average, SLICAP 

takes 21.48 seconds to segment an image of size 481*321, 

where 10 seconds are for SLIC and only 7.8 seconds for the 

AP clustering. The SLICAP method could be implemented in 

real-time if using C language programming for a practical 

application (producing superpixels is less than half second if 

using SLIC executable file in Windows). 

 

We point out that the settings of the parameters in SLICAP 

would affect its running time, such as the maximum number 

of iterations, the threshold of convergence value and the 

damping factor. 

 

Table 3: Cost time of the three methods for each image. 

Method PRI VoI BDE 

Ncuts 0.7801 3.0475 12.7841 

SLICKM (average) 0.7875 3.0528 12.8173 

SLICKM (best of 200) 0.8006 2.5377 11.4315 

SLICAP (similarity A) 0.8147 2.1108 9.9034 

SLICAP (similarity B) 0.8155 2.4241 10.6973 

SLICAP (similarity C) 0.7807 2.5358 12.4449 

 

5. Conclusion 
 

We propose a novel approach based on superpixel to image 

segmentation. This approach builds a similarity matrix after 

using the SLIC superpixel algorithm, and then merges these 

superpixels into several regions by the AP clustering 

algorithm with the similarity matrix. The results of the 

experiment on BSD show that it performs very well both in 

boundary-based and region-based assessments. Moreover, 

the number of targets is determined automatically. On the 

other hand, this method uses only color information and does 

not exploit the texture and spatial information of the image. 

We are currently studying how to utilize texture or spatial 

information to improve segmentation performance. 
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