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Abstract: The main function of wireless sensors is to capture the location of targets, may be for message passing or for locating 

enemies as in military, by monitoring the physical surrounding. If the target’s maneuver is not known a priori, the task becomes 

difficult. In this paper, this problem is tackled by the measuring mobile target signal’s time of arrival(TOA).The network contains a 

mobile sensor, moving target, number of anchor nodes and a sensor controller that acts as a repository for storing location 

information. A min-max approximation scheme is used to estimate tracking location along with semi-definite programming (SDP) 

relaxation. A cubic strategy is applied to the mobile sensor navigation. Furthermore, an energy-efficient localization algorithm, called 

as probabilistic trap coverage protocol is included within each node configurations so as to improve the performance gain, throughput 

and hence minimize the energy consumption. Thereby, it enhances navigation control by minimizing the number of active sensors and 

attempts to achieve energy balance. Here performance analysis is done theoretically.  
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1. Introduction 
 

A Wireless Sensor Network monitors physical environment 

conditions such as temperature, sound, pressure, etc. and pass 

data cooperatively to a main location (base station) through 

the network. The most networks used today are bi-directional 

which enables the control of sensor activities. The wireless 

sensor networks’ development was motivated by several 

military applications as in surveillance, many industrial and 

consumer applications, to monitor and control various 

industrial operations, monitor machine status, etc. 

 

The WSN is built of nodes – from a few to several hundreds 

or even thousands, where each node is connected to one or 

more sensors. Each of them has typically several parts: a 

radio transceiver with an internal antenna or connection to 

another antenna, a microcontroller, an electronic circuit for 

interfacing with the sensors and an energy source, usually a 

battery or an embedded form of energy harvesting. A sensor 

node might vary in size from that of a shoebox down to the 

size of a grain of dust, although functioning "motes" of 

genuine microscopic dimensions have yet to be created. The 

cost of sensor nodes is similarly variable, ranging from a few 

to hundreds of dollars, depending on the complexity of the 

individual sensor nodes. Size and cost constraints on sensor 

nodes result in corresponding constraints on resources such 

as energy, memory, computational speed and 

communications bandwidth. The topology of the WSNs can 

vary from a simple star network to an advanced multi-hop 

wireless mesh network. The propagation technique between 

the hops of the network can be routing or flooding.  

 
Typically target tracking follows two steps. In the first step, it 

needs to find target positions from noisy sensor data 

measurements, either through estimation or prediction. Next, 

it needs to control and monitor mobile sensor tracker to 

follow the moving target. A general TOA measurement 

model that accounts for the measurement noise due to 

multipath propagation and sensing error is used here. Based 

on the model, a min-max approximation approach is 

proposed to estimate the location for tracking that can be 

efficiently and effectively solved by means of semi-definite 

programming (SDP) relaxation. Also apply the cubic 

function for navigating the movements of mobile sensors. In 

addition, the random localization of the mobile sensor and 

the target is also estimated. The efficient exploitation of 

measurement information paved the way to implement a 

weighted tracking algorithm. The use of the TOA 

measurement model has various advantages like easy to 

acquire because sensors only needs to identify a special 

signal feature such as a known signal preamble to record its 

arrival time, TOA as a practical model because the 

transmission start time of the signal need not be known in 

prior. Hence TOA model enables direct estimation of the 

source location by processing the TOA measurement data. 

 

The localized algorithm PTCP guarantees energy efficiency 

operating in two phases i.e., an initial phase followed by an 

action phase. In the initial phase, they communicate with the 

neighbors and decide to stay active or switch to sleep mode. 

Sensors make decision locally and asynchronously. They 

contend to sleep to save energy with the priority being 

imparted along with their ID. 

 

2. Related Works 
 

The challenge of target tracking and mobile sensor 

navigation arises when a mobile target does not follow a 

known predictable path. Target tracking is typically an 

ordered location estimation problem. The target is probably a 

signal emitter whose transmissions are captured by a number 

of distributed sensors for location estimation. There are 

various target localization method-related various 

measurement models such as received signal strength (RSS), 

time of arrival (TOA), time difference of arrival (TDOA), 

signal angle of arrival (AOA), and their combinations.  
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Location estimation and tracking for the mobile devices have 

attracted a significant amount of attention for a long time. 

The different schemes based on location estimation have 

been widely adopted based on the radio signals transmitted 

between the mobile device and the base stations. The 

location finders associated with the Kalman filtering 

techniques are utilized to both acquire location estimation 

and trajectory tracking for mobile nodes. But most of the 

existing techniques have become unreliable for location 

tracking due to the deficiency of signal sources. In 2009 

Tseng et.al [1] proposed two predictive location tracking 

algorithms to alleviate this problem. The Predictive Location 

Tracking (PLT) scheme utilizes the predictive information 

obtained from the Kalman filter in order to provide the 

additional signal inputs for the location calculator. Moreover, 

the GPLT (Geometric-assisted) scheme incorporates the 

Geometric Dilution of Precision (GDOP) information into 

the algorithm design. The GPLT scheme enables accuracy in 

location estimation, especially with inadequate signal 

sources. The experimental results show that the GPLT 

algorithm can achieve better precision while comparing with 

other network-based location tracking schemes. 
 
In 2006, Huang et.al [2] presents a source localization 

algorithm based on the source signal's time-of-arrival (TOA) 

at sensors that are not synchronized with one another or 

others. This algorithm calculates source locations using a 

window of TOA measurements which, in effect, formulates a 

sensor array which is virtual. The Gaussian noise model 

makes use of maximum likelihood estimates (MLE) for the 

source position and displacement are obtained. The Cramer-

Rao lower bound evaluation is used to address performance 

issues and considers the virtual sensor array's geometric 

properties. This localization algorithm is combined with the 

extended Kalman filter (EKF) and the unscented Kalman 

filter to track the source trajectory resulting in good tracking 

performance.  

 

Mobility management is a major challenge in mobile ad hoc 

networks (MANETs) due in part to the dynamically changing 

network structures. For mobile sensor networks used for 

route or set of points with minimum length surveillance 
applications, it is essential to use a mobile scheme that can 

empower nodes to make better decisions regarding their 

positions such that strategic tasks such as target tracking can 

benefit from node movement. Zou et.al [3] in his paper 

describes a distributed mobility management scheme for 

mobile sensor networks. This scheme considers node 

mobility as part of a distributed optimization problem which 

integrates mobility-enhanced improvement in the quality of 

target tracking data. 

 

In 2004, Rao et.al [4], considers a mobile ad hoc sensor 

network. The cost of communication and mobility are the two 

factors used along with consideration of the possible 

scanning tasks of the nodes for sensor design. In this 

approach, for any single mobile node, its local energy cost 

information is available. A distributed simulated annealing 

framework is used to govern the motion of the nodes and 

shows that a global objective function comprising mobility 

and communication energy costs will be minimized. This 

paper concludes with a simulation study focusing on mobile 

sensors with dual roles of scanning and relaying higher 

priority tracking traffic from tracking nodes.  

 

3. Problem Identification 
 

We have multiple sensor nodes that are kept at different 

distance so as to track the target and make possible the data 

transmission at a faster rate. When these sensors perform 

sensing a large amount of energy is required each time it 

performs the work. So the mere tracking and localization 

cannot make sense to a wireless sensor network to perform 

efficiently in a network, if we alone consider TOA 

measurements. Hence it is essential to minimize the battery 

power and total throughput through an efficient energy 

perspective. This problem can be tackled with an energy-

efficient algorithm which is the goal of this work. 
 

4. Proposed Model 
 

In the existing system the problem of mobile sensor 

navigation and mobile target tracking based on Time Of 

Arrival (TOA) measurement model is considered. It 

emphasizes on TOA measurement model that accounts for 

the measurement noise due to multi-path propagation and 

sensing error. Here a min-max approximation scheme is 

proposed to estimate the location for tracking that can be 

efficiently and effectively solved by means of semi-definite 

programming (SDP) relaxation. We apply the cubic function 

for navigating the movements of mobile sensors. In addition, 

we also investigate the simultaneous localization of the 

mobile sensor and the target to improve the tracking 

accuracy. We present a weighted tracking algorithm in order 

to exploit the measurement information more efficiently. The 

numerical result shows that the proposed tracking approach 

works well. 

 

In order to enhance the performance, extend the concept of 

trap coverage into a realistic model and analyze the detection 

probability of mobile targets with various moving speeds 

traveling along an arbitrary path in a RoI theoretically, based 

on which probabilistic trap coverage is defined. We 

formulate and study the problem of scheduling the activation 

of sensors energy-efficiently while providing desired 

probabilistic trap coverage in large-scale WSNs. We design 

an efficient localized protocol to solve the problem. The 

lower bound of lifetime acquired by the protocol is proven to 

be nearly half the optimum lifetime. Extensive simulations 

are conducted to validate the efficiency of the protocol. 

 

4.1 Mobile Sensor Navigation Strategy 

 

A navigator in this case aims to control the mobile sensor to 

get close to the moving target from any initial position. Since 

the target maneuvers are not known a priori to the controller, 

solving the problem requires a real-time strategy. At time 

instant Tj, the mobile sensor is with a velocity vj and angle αj 

to the positive horizontal axis, and the target locates at yj = 

[yj1 yj2]
T
. The radial line that connects the mobile sensor 

and the target is denoted by rj, with angle ɸj to the positive 

horizontal axis. In polar coordinates, the mobile sensor and 

target move according to the following kinematics: 
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zj1=vjcosαj, zj2=vjsinαj                          (4) 

yj1=µjcosβj, yj2 = µjsinβj                       (5) 

respectively. 

A cubic navigation strategy has been proposed, where 

 αj= ɸj + Kɸj
3                                                

(6) 

Assuming vj>µj, it has been proven that under this cubic law, 

the corresponding rj< 0, and the mobile sensor will reach the 

target successfully. Because of the simplicity of this 

navigation law, we will apply this strategy in our work. 

Alternatively, we may be interested in keeping the mobile 

sensor at a given distance away from the target for 

surveillance purpose without being discovered. In such 

applications, we need to set rj = 0. We have 

µjcos(βj-ɸj) = vj cos(Kɸj
3)                           

(7) 

this gives the mobile sensor speed as 

vj = µjcos(βj-ɸj)/cos(K ɸj
3
)             (8) 

 

4.2 Tracking Algorithm 

 

The first step of tracking is to estimate positions of both the 

target and mobile sensor. Since the measurement in the form 

of TOA information collected at the data fusion center is the 

same for both the target and the mobile sensor, we, therefore, 

focus our discussion on how to estimate the location vector yj 

of the target at a given time instant Tj. We can modify the 

TOA model by rewriting (1) into  

tji- tjo= 1/c ||xi – yj|| + 1/c||xi -yj||nji+δj                (9) 

Squaring both sides, we get 

(tji-tjo)
2
-1/c

2
||xi–yj||

2
=(1/c||xi-yj||nji+δj)(1/c||xi-yj||(2+nji)+δj)     

(10)  

The right-hand side of (10) is a noise term that is independent 

for different indices i. If nij and δj are zero, then the right-

hand side of (10) would be zero. Therefore, one way to 

estimate the optimum yj without assuming any particular 

characteristics on ωji is to minimize the lα norm of ωji. This 

approach makes no assumption on the noise distribution or 

on the noise dependency. It simply tries to minimize the peak 

error. Therefore, its performance is expected to be less 

sensitive to the noise distribution or correlation. Thus, we 

propose to adopt the min-max criterion for location 

estimation via 

ŷj = arg min max |(tji – tj0)
2 
– 1/c

2
||xi-yj||

2 
|           (11) 

The min-max formulation (11) is non-convex, but is quite 

amenable to semi-definite relaxations.(11) can be rewritten as 

ŷj = arg min max |φ(tjs,tji,tjo,yjs,xi,yj)|             (12) 

 

In order to make the whole formulation convex, we relax the 

two equalities to inequalities Yjs>=yj
T
yj and tjs = tjo.tjo. 

These inequalities can also be expressed in linear matrix 

inequalities. 

 

In addition, based on the location estimate at time instant Tj-

1, we can obtain an approximate location vector for the target 

at time instant Tj. Let ∆Tj= Tj – Tj-1 and µj-1be the 

estimated velocity vector of the target at time instant Tj-1. 

This can be used as additional constraints for the target 

location estimation at time instant Tj. Considering in 2D, the 

location change vector ∆yj is restricted to a box, then the 

corresponding yj will also be constrained to a box, i.e., 

yjl<=yj1<=yjr, yjd<=yj2<=yju. (13) 

 

We can apply the Reformulation-Linearization-Technique 

(RLT) in order to obtain some extra constraints. In fact, 

based on RLT, inequalities can be relaxed as following 

matrix form: 

 

 
 

Here “>= 0” denotes that each element in the vector is non-

negative. Combining the above constraints, we obtain the 

following SDP optimization formulation: 

 

 
 

4.3 Mobile Sensor Localization 

  

Similar to estimating the location of the target, we can 

reformulate the mobile sensor localization problem into an 

SDP relaxation problem. More specifically, we can estimate 

the mobile sensor location zj via the similar formulation 

based on the TOA measurements at the anchor nodes from 

the signal received from the mobile sensor. Define zjs =zTjzj 

and Tjs =Tj0 Tj0. Similarly, based on the input velocity 

vector vj-1 of the mobile sensor from the controller at time 

instant Tj-1, we can approximate the location change of the 

mobile sensor as ∆zj = zj – zj-1 = ∆Tj vj-1. By applying the 

similar relaxations, we obtain the following SDP formulation: 

 
 

4.3 Energy-efficient Protocol-PTCP  

 

Here, a localized algorithm called the Probabilistic Trap 

Coverage Protocol (PTCP) is proposed to guarantee (D,ε)-

trap coverage and maintain energy efficiency in the RoI. The 

operation time is divided into time slots. Each time slot is 

divided into two parts, i.e., an initial phase followed by an 

action phase. Every sensor wakes up at the beginning of each 

time slot. In the initial phase, they communicate with 

neighboring sensors and decide whether to stay in active 

mode or switch to sleep mode. Sensors decide on its mode 
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locally and asynchronously. After the initial phase, during the 

action phase, if sensors choose to be active, they perform 

sensing, communication, and other tasks; otherwise, they 

switch to sleep mode to save energy. 

 

 
Figure 1: PTCP working 

 

The PTCP runs during the initial phase of each slot. Sensors 

contend to sleep to save energy. If too many sensors choose 

to sleep, the requirement of probabilistic trap coverage will 

not be met. On the other hand, if too many sensors are active, 

it will be a waste of resources. Thus, a mechanism to 

coordinate sensors’ decisions is desired. We, therefore, 

introduce priority. Every sensor has a unique ID. At the 

beginning of each time slot, each sensor is assigned a priority 

based on its residual energy and ID. Let pri denote the 

priority of sensor i. We define pri = {Ei, IDi}, where Ei is the 

residual energy of sensor i, and IDi is its ID. pri> prj if 1) Ei 

< Ej or 2)E(i) = E(j), and IDi < IDj . If a sensor has a lower 

priority than its neighbors, it has to make a decision after the 

sensors with higher priority. Sensor i start to broadcast its 

priority and location information to neighbors, the sensors 

within its transmission range. The information is packed as 

Initial-Message(i). At the same time, i will receive the Initial-

Messages from its neighboring nodes too. Multihop 

communication is entertained in PTCP so i may receive 

messages whose sender is out of its transmission range. 

Sensor i should check the distance between the sender and 

itself. If the distance is greater than twice its diameter, the 

information is abandoned since they are impossible to be in 

the same circular graph; otherwise, sensor i should record the 

received information and forward it to neighbors to perform 

multihop communication. A time window is set for sensor i 

to wait for all Initial-Messages. The length of time window 

lwin is determined by sensor deployment density and the range 

D. It needs to guarantee that all sensors within the range of 

2D are recorded during the time window. Since information 

broadcast is usually very fast, the time window should not 

occupy much time. When the time window ends, sensor i 

start to determine whether to sleep. It will broadcast its 

decision packed as State-Message(i). There are two kinds of 

State-Message: 1) State-Messagesleep(i) and 2) State-

Messageactive(i), which denote the decision of sensor i, 

respectively. Here, we assume that Ci contains the recorded 

sensors from received Initial-Messages and that Mi contains 

sensors whose priority is higher than that of sensor i. If Mi is 

empty, i occupy the chance to make a decision since it is the 

sensor with the highest priority among the sensors within a 

distance of 2D. It will construct the circular graph and divide 

faces based on the information recorded in Ci. Note that 

sensor i itself is not contained in either Ci or Mi. Then, it 

employs Algorithm to determine whether the region within a 

distance of D is (D, ε)-trap covered. For the connectivity 

issue, sensor i also needs to guarantee that active sensors in a 

circular graph are connected if it chooses to sleep. Given the 

transmission range and the location information on all 

sensors in Ci, i can check whether all sensors in Ci are 

connected without i. If the region is covered and sensors in 

Ci are connected without i, sensor I will broadcast a State-

Messagesleep(i) since it does not need to be active; otherwise, it 

broadcasts a State-Messageactive(i) and chooses to stay active. 

If the region is still not (D, ε)-trap covered after sensor i 

chooses to stay active, it indicates that there are not enough 

sensors to provide (D, ε)-trap coverage and the lifetime of 

network terminates. If Mi is not empty, i have to wait for the 

State-Messages from other sensors in Mi. If i receive a new 

State-Messagesleep whose sender is in set Ci, it will record the 

information, forward the message to its neighbors, and 

remove the sender from set Ci and, Mi if in it; otherwise, it 

will abandon the message since the message is useless. 

Sensor i can only make a decision when Mi is empty. Then, 

sensor i construct the circular graph based on Ci. All sensors 

in Ci are viewed as active when sensor i make a decision. 

Similarly, sensor i chooses to stay active in the PTCP if 

probabilistic trap coverage is not guaranteed or sensors in Ci 

will be disconnected without i. After decision making, sensor 

I will act as its choice, either in active mode or in sleep 

mode. In summary, the PTCP puts sensors into sleep mode in 

the order of priority/residual energy. In this way, sensors with 

less residual energy have the higher priority to switch to 

sleep mode and leave sensors with more residual energy to 

perform sensing tasks for energy balance, which can prolong 

the network’s lifetime. 

 

Algorithm PTCP 

1. Define pri = {Ei, IDi} as the priority of sensor i. pri >prj if 

Ei < Ej or (Ei == Ej and IDi < IDj ); 

2. Set timeout threshold tτ . 

3. At the beginning of each time slot, i turn into active mode; 

4. Broadcast Initial-Message (i) to neighbors; 

5. While Time window not end do 

6. if Receive new Initial-Message(j) and distance(i, j) <2D 

then 

7. Record Initial-Message(j); 

8. Broadcast Initial-Message(j) to neighbors; 

9. end if 

10.end while 

11. Define set Ci contains the recorded sensors from received 

Initial-Message; 

12. Define set Mi contains sensors whose priority is greater 

than pri; 

13. while Ci= ∅ 

14. % Update Ci and Mi when receiving State-Message from 

sensors in Ci 

15. if Receive new State-Message(j) then 

16. if distance(i, j) < 2D 

17. Record State-Message(j); 

18. Broadcast State-Message(j) to neighbors; 

19. if j decides to sleep then 

20. Remove j from Ci; 
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21. end if 

22. if j ∈ Mi then 

23. Remove j from Mi; 

24. end if 

25. end if 

26. end if 

27. % Clear Mi if timeout 

28. if Mi = ∅ and exceed timeout threshold tτ then 

29. Ci = Ci −Mi; 

30. Let Mi = ∅; 

31. end if 

32. % Start to decide if Mi is empty 

33. if Mi == ∅ then 

34. Assume set Fi as the faces who are covered by sensor i; 

 

5. Advantages of Proposed method 

 
 The proposed method efficiently tracks the target using 

TOA even in higher noise rates.  

 TCP minimizes amount of active sensors and hence energy 

balance is attained. 

 Performance gain, throughput, and better navigation 

control is ensured through the theoretical study when 

compared with the state-of -art solutions. 

 The number of stable nodes can be found with the energy 

constraint. 

 

6. Conclusion 
 

With unknown target and mobile sensor locations, we need to 

estimate the locations of the target and the mobile sensors 

first. Based on a more general TOA measurement model, 

convex optimization algorithms through SDP relaxation are 

developed for localization. Here is provided a sequential 

algorithm and a joint weighted localization algorithm before 
controlling the mobile sensor movement to follow the target. 

For the navigation of mobile sensors, the cubic law is 

applied. With these it’s supposed to provide an efficient 

approach towards tracking. Along with this an energy 

efficient algorithm called PTCP is being used. The lower 

bound of lifetime acquired by the protocol is proven to be 

nearly half the optimum lifetime. This makes the 

environment much efficient towards tracking approach. 
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