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Abstract: In this paper a Poisson–Gamma distribution has been proposed, which is obtained by compounding a Poisson distribution 

with a two parameter Gamma distribution. Here the pmf of the proposed distribution (PGD) is derived. The expressions for raw 

moments, central moments, coefficients of skewness and kurtosis have been derived. Survival and Hazard functions of proposed 

distribution are also obtained. The estimator of the parameters have been obtained by method of Moments as well as method of 

Maximum Likelihood. The proposed distribution has found to be a good fit of Kemp & Kemp survival data (1965). 
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1. Introduction  
 

In reliability/survival lifetime modeling, it is common to 

treat failure data as being continuous, implying some degree 

of precision in measurement. Too often in practice, however, 

failures are either noted at regular inspection intervals, 

occurs in a discrete process or are simply recorded in bins. 

In life testing experiments or survival time data, it is 

sometimes impossible or inconvenient to measure the life 

length on a continuous scale. Thus, it is essential to construct 

discrete lifetime models for discrete failure survival data, 

Lai (2013). Roy, D. (2004) have also discussed the 

properties of discrete Rayleigh distribution. Finite range 

discrete lifetime distributions are discussed by Lai, C.D. et 

al. (1995). 

 

Let the random variable X has a Poisson distribution with 

pmf as 

f(x; λ) =   
e−λλ

x

x!
     ; x= 0, 1, 2, …  ;   λ > 0     (1) 

Let us consider a two parameter Gamma distribution with 

pdf is given by 

h(x; α, β) =   
αβ

Г(β)
 e−αx  xβ−1 ; α, β > 0;    0 < x <   (2) 

Now if the parameter  of the above Poisson distribution 

(Equation-1) is distributed as the above Gamma distribution 

(Equation-2). The resultant pmf of X, g(x; α, β) may be 

obtained as 

g(x; α, β)  =  
e−λλ

x

x!

∞

0
   

αβ

Г(β)
 e−αλ λ

β−1
 dλ     (3) 

or,  

g(x; α, β) =  
Г(x+β)

x! Г(β)
  

α

1+α
 
β
  

1

1+α
 

x
; x= 0,1,2,…;α, β > 0                         

(4) 
which is the pmf of Poisson-Gamma distribution (Counting 

Process). Withers and Nadarjah (2011) has discussed some 

properties of Poisson-Gamma distribution. 

 

Equation (4) may be expressed as  

g(x; α, β) =  
(x+β−1)! 

x!(β−1)!
  

α

1+α
 
β
  

1

1+α
 

x
   ; 

x= 0,1,2,…    ;  α > 0, β = 1,2.…                       (5) 
which is the pmf of classical Negative Binomial Distribution 

(as generated by the number of independent trials necessary 

to obtain β occurrences of an event which has constants 

probability p =  
α

1+α
  of occurrence at each trial, Johnson 

and Kotz (1969)).  

or,   g(x;  α, β)  =    
x + β − 1

β − 1
  αβ  1 + α −(x+β)  ; 

 x= 0,1,2,…   ; α >  0 , β = 1,2,..                         (6) 
If β is not a non-negative integer, Equation-4 may be termed 

as ‘Psuedo’ Negative Binomial Distribution. 

 

Thus, this hierarchical proposed distribution (Equation-4) 

may be named as a ‘Generalized’ Negative Binomial 

Distribution in the sense that  is either non-negative integer 

or a non-negative real number. Here we get 

 g(x;  α, β) ∞
x=1  = 1                         (7) 

Students (1907) used the Negative Binomial Distribution as 

an alternative to the Poisson distribution in describing counts 

on the plates of haemacytometer. The Negative Binomial 

Distribution was studied by Fisher (1941), Jeffreys (1941) 

and Anscombe (1950) under different parameterization. It 

has been shown to be the limiting form of Eggenberg and 

Polya‟s urn model by Patil et al. (1984) and Gamma mixture 

of Poisson distribution by Greenwood and Yule (1920), 

addition of a set of correlated Poisson distributions by 

Martiz (1952). The Negative Binomial Distribution also 

arises out of a few stochastic processes as pointed by 

McKendrick (1914), Irwin (1941), Lundeberg (1940) and 

Kendall (1949). This distribution, being more flexible than 

Poison distribution, enjoys a plethora of applications. It can 

be used to model accident data, psychological data, 

economics data, consumer data, medical data, defense data 

and so on. Chandra and Roy (2012) proposed a continuous 

version of the Negative Binomial Distribution by 

considering a particular type of survival function. 
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Figure 1: Showing of pmf, cdf, survival function, hazard function for PGD (Equation-4) 

 

 
Figure 2: Showing of pmf, cdf, survival function, hazard function for PGD (Equation-6) 

 

2. Moments of Poisson-Gamma Distribution 

(PGD)(Equation-6) 
 

The first four raw moments about origin and their 

corresponding central moments of Poisson Gamma 

Distribution (as Negative Binomial Distribution) are 

μ1
′ = 

β

α
                                

μ2
′ = 

 β (α+β+1)

α2   

μ3
′ = 

 β (α2+β2+3α+3β+3αβ +2)

α3   

μ4
′ = 

 β (α3+β3+7α2β+6αβ2+6β2+18αβ + 11β+6)

α4   

and their corresponding central moments are 

μ1 = μ1
′ = 

β

α
  

μ2 = 
 β (1+α)

α2   

μ3 = 
 β  1+α (2+α)

α3   

μ4 = 
 β  1+α [α2+3 2+β  1+α ]

α4  

Thus, the mean, variance, skewness, kurtosis and their 

coefficients are given by 

Mean (μ1) =  μ1
′ = 

β

α
                                (8) 

Variance (μ2) = 
 β (1+α)

α2                                (9) 

β1 = 
μ3

2

μ2
3 = 

(2+α)2

 β  1+α 
                             (10) 

β2 = 
μ4

μ2
2 = 

α2+3 2+β  1+α 

 β  1+α 
                        (11) 

γ1 =  β1 =  2 + α   
1

 β  1+α 
                    (12) 

γ2 = β2 -3 =   
α2+ 6α+ 6

 β  1+α 
                          (13) 

 

3. Mode of Poisson-Gamma Distribution 

(PGD) 
 

P(x)

P(x−1)
 = 

x+ β−1

x(1 + α)
                (14) 

Now, we can discuss the following cases: 

 

Case I: When  
β−1

α
  is not an integer 

Let us suppose that S is the integral part of  
β−1

α
  

So that 
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P(1)

P(0)
 > 1, 

P(2)

P(1)
 > 1,…, 

P(S− 1)

P(S)
 > 1, 

P(S)

P(S−1)
 > 1 and 

P(S+1)

P(S)
  < 1, 

P(S+2)

P(S+1)
 <  1,…  (15)                        

P(S) is the maximum value, in this case this distribution is 

unimodal and the integral part of  
β−1

α
  is the unique modal 

value. 

 

Case II: When  
β−1

α
  = k (say) is an integer 

Here as in case I, we have  
P(1)

P(0)
 > 1, 

P(2)

P(1)
  > 1, …,  

P(k− 1)

P(k−2)
  > 1, 

P(k)

P(k−1)
 = 1 and 

P(k+1)

P(k)
  < 1,   

P(k+2)

P(k+1)
 < 1,…                                   (16) 

In this case the distribution is bimodal and two modes are at 

(k-1) and k such that  
β−1

α
− 1  and  

β−1

α
  

 

 Notes 1: If 0 < β ≤ 1, the mode always lies at zero 

2: If   
β−1

α
  ≤ 1, even then the mode will be zero 

irrespective the value of β 

 

4. Approximate Estimation of the parameters α 

and β 
 

4.1. Maximum Likelihood Estimation (MLE) Method 

 

Given a random sample   x1 , x2,…, xn , of size n from the PG 

distribution with p.m.f.  (Equation-4) is  

g(x; α, β) =   
Г(x+β)

x! Г(β)
  αβ  1 + α −(x+β)                                                         

=   
Г(x+β)

x! Г(β)
  αβ  1 + α −β     1 + α −x       (17) 

The likelihood function will be 

P(xi; α, β) =  g(xi;  α, β)n
i=1              (18) 

The log likelihood becomes 

L =  logn
i=1  

Г(xi +β)

x! Г(β)
  + n  log α – n  log (1 + α) - 

log (1 + α)  𝑥𝑖
𝑛
𝑖=1                  (19) 

Here we get  

 
δL

δα
 = 

nβ

α
 – 

nβ

(1+α)
 - 

 𝑥𝑖
𝑛
𝑖=1

(1+α)
                              (20) 

and 

 
δL

δβ
 =  

δ

δβ
log  

Г(xi +β)

x! Г(β)
  n

i=1    + n log  
α

(1+α)
      (21) 

Solving (Equation-20) for , we have 
δL

δα
 = 0,  

Now we have 

α  = 
nβ

 𝑥𝑖
𝑛
𝑖=1

 = 
β

x      
                              (22) 

Putting this value of  in (Equation-21), we get 

  
δ

δβ
log  

Г(xi +β)

x! Г(β)
  n

i=1   + n log [
nβ

 𝑥𝑖
𝑛
𝑖=1  + nβ

] = 0   (23) 

Here we are unable to get a direct solution for . These 

equations (22) and (23) may be solved by a Numerical 

method. These estimators are also applicable for the 

distribution (Equation-4). 

 

4.2. Method of Moments Estimation  

 

The pmf of PGD are given as 

g(x;  α, β)  =    
Г(x+β)

x! Г(β)
  αβ  1 + α −(x+β)       ; 

   x= 0, 1, 2, …          ; α, β >  0             (24) 

For the p.m.f. (Equation-6), we have 

μ1
′ = 

β

α
                                       (25) 

μ2
′ = 

 β (α+β+1)

α2                                (26) 

From (Equation-25), by replacing μ1
′ by x , we have   

 x   = 
β

α
 

 α  =  
β

x 
 , which is same as MLE (Equation-22)    (27) 

Now, we can write  

 μ2
′ = 

 fi xi
2

n
  = 

 β (α+β+1)

α2  

Then  

 β   = 
x 2  

 f i x i
2

n
 – x  − x 2

                               (28) 

For practical purposes we may take these estimators  and  

for the population with pmf represented by (Equation-4). 

 

5. Survival Function 
 

Let F(k) be the cdf and f(k) is pmf of X. The survival 

function is given by 

S(k) = 1 – F (k) = Pr{X > k} =   f(j)∞
j=k+1  , k= 1,2,…. (29) 

 with S(0) = 1. S may be defined over the whole non-

negative real line by 

 S(t) = S(k)    for 0 ≤ k ≤ t <  k+1,   k = 1,2,3,…                

(30) 

Where t  [0, ∞). Here S (t) is a right continuous function. 

According to Lai (2013) our case is k =0,1,2…, that will be 

obtained by Y = X-1, and thus S(0-) = 1 and       S(0) = pr (X 

= 0).   

6. Classical Hazard Rate Function 
 

Let hazard (failure) rate function h(k) defined as  

h(k) = Pr(X = k │X ≥ k) =  
Pr(X=k)

Pr(X≥k)
 = 

f(k)

S(k−1)
         (31) 

 provided  

Pr(X ≥ i) = 0. It may be expressed as  

 h(x) = 
S k−1 − S(k)

S(k−1)
                          (32)   

Equation (32) may be considered as the classical discrete 

hazard rate function. For convenience, we may simply refer 

it as the hazard rate function without the prefix „classical‟. 

(Lai, (2013)) 

 

7. Necessary and Sufficient Conditions: (Lai, 

(2013)) 
 

A sequence {h(k), k ≥ 1} is a discrete hazard rate if and only 

if 

a. For all k <  m, h(k) < 1 and h(m) = 1.The distribution is 

then defined over {1,2,…,m}, or 

b. For all k  N+   = {1, 2, …}, 0 ≤  h(k) ≤ 1 and 

 h(i)∞
i=1  = ∞. The distribution is defined over  k  N+ 

in this case (Shaked et al. (1995)). 

It is easily verified that Hazard Rate obtained by (Eqation-

32) for the distribution (Eqation-4). 
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8. Applications  
 
8.1. The following data set is due to Kemp and Kemp (1965) 

pertains to the distribution of mistakes in copying groups of 

random digits are given as : 

 
Let us fit (Equation-4) this data using the method of 

moments. Here we get sample mean x  = 0.783, n = 60 and       
 fi x i

2

n
 = 1.85 

 

Solving (Equation-27) and (Equation-28) we have, α  = 

1.725007766 and β  = 1.35068108 

 

Using these estimators, we obtain the expected frequencies 

as shown in Table-1 

 

Table 1: Chi-Square Goodness-of-fit test for the proposed 

model PGD (Equation-4) 
X 𝑜𝑖  𝑒𝑖  (𝑜𝑖 − 𝑒𝑖)

2 (𝑜𝑖 − 𝑒𝑖)
2

𝑒𝑖
 

0 35 32 9 0.2185 

1 11 16 25 1.5625 

2 8 7 1 0.142857142 

3 

4 

5 

4 

2 =6 

0 

3 

1= 5 

1 

 

1 

 

0.2 

 =60 =60  𝜒2=2.186607142 

 
Interpretation and conclusion 

The calculated value of Chi-Square is equal to 2.186607142. 

The tabulated value of Chi-Square at 1 d.f. at 5 % level of 

significance is 3.841. From the results it is obvious that the 

calculated value of Chi-Square is less than the tabulated 

value of Chi-Square. So we can say that our proposed 

distribution is good fitted.  
 

 
Figure 3: Observed and Fitted Frequency curves for table-1 

 

8.2 When we choose 𝛃 as integer equal to 1 

The data set due to Kemp and Kemp (1965) as above may be 

used for the purpose of comparison  

Since β  1.35061081, we can take β  = 1.00 and α   = 

1.277139208 

Fitting the above data using α   = 1.277139208 and β   = 1.00, 

we get the results as tabulated in Table-2 bellow 

 

Table 2: Chi-Square Goodness-of-fit test for the proposed 

model PGD (Equation-6) 
X 𝑂𝑖  𝐸𝑖   𝑂𝑖 −  𝐸𝑖 

2  𝑂𝑖 −  𝐸𝑖 
2

𝐸𝑖
 

0 35 34 1 0.029411764 

1 11 15 16 1.066666667 

2 8 6 4 0.666666667 

3 

4 

5 

4 

2 =6 

0 

3 

1  =5 

1 

 

1 

 

0.2 

Total    60 60  𝜒2 =1.962745098 

 

Interpretation and conclusion 

The calculated value of Chi-Square is equal to 1.962745098. 

The tabulated value of Chi-Square for 1 d.f. at 5 % level of 

significance is 3.841. Thus the calculated value of Chi-

Square is less than the tabulated value of Chi-Square. So we 

can say that our proposed distribution is a good fit.  

 

 
Figure 4: Observed and Fitted Frequency curves for table-2 
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8.3 When we choose 𝛃 as integer equal to 2 

 

The data set due to Kemp and Kemp (1965) as above may be 

used for the purpose of comparison  

Since β  = 1.35061081, we can take β   = 2.00 and α  = 

2.554278416 

Fitting the above data using α   = 2.554278416 and β   = 2.00, 

we get the results as tabulated in Table-3 bellow. 

 

Table 3: Chi-Square Goodness-of-fit test for the proposed 

model PGD (Eqation-6) 
X 𝑂𝑖  𝐸𝑖   𝑂𝑖 −  𝐸𝑖 

2  𝑂𝑖 −  𝐸𝑖 
2

𝐸𝑖
 

0 35 31 16 0.516129032 

1 11 17 36 2.117647059 

2 8 7 1 .142857142 

3 

4 

5 

4 

2 =  6 

0 

3 

1      = 5 

1 

 

1 

 

0.2 

Total      60 60  𝜒2 =2.976633233 

 

Interpretation and conclusion 

 

The calculated value of Chi-Square is equal to 2.976633233 

The tabulated value of Chi-Square for 1 d.f. at 5 % level of 

significance is 3.841. Thus the calculated value of Chi-

Square is less than the tabulated value of Chi-Square. So we 

can say that our proposed distribution is a good fit. 

 

 

 
Figure 5: Observed and Fitted Frequency curves for table-3 

 

8.4. This data set is Student‟s (1907) historic data on 

Haemocytometer counts of cells used by Borah (1984) for 

fitting the Gegenbauer distribution. 

 
Let us fit (Eqation-4) using the method of moments. Here 

we get sample mean x  = 0.6825, n = 400 and       
 fi x i

2

n
 = 

1.2275 

Solving (Eqation-27) and (Eqation-28) we have, α  = 

5.285064369 and β  = 3.607056432. Using these estimators, 

we obtain the expected frequencies as shown in Table-4 

 

Table 4: Chi-Square Goodness-of-fit test for the proposed 

model PGD (Equation-4) 

X 𝑂𝑖  𝐸𝑖   𝑂𝑖 −  𝐸𝑖 
2 

 𝑂𝑖 −  𝐸𝑖 
2

𝐸𝑖
 

0 213 214 1 0.004672897 

1 128 123 25 0.203252032 

2 37 45 64 1.422222222 

3 18 13 25 1.923076923 

4 

5 

6 

3 

1 = 4 

0 

4 

1 = 5 

0 

1 0.2 

Total   = 400 400  𝜒2 =3.75322236 

 

Interpretation and Conclusion 

 

The calculated value of Chi-Square is equal to 3.753222.36 

The tabulated value of Chi-Square for 2 d.f. at 5 % level of 

significance is 5.99 Thus the calculated value of Chi-Square 

is less than the tabulated value of Chi-Square. So we can say 

that our proposed distribution is a good fit 

 

Shankar, R.et al. (2012) has also fitted this data set by one 

parameter and two parameter Poisson-Lindley distribution 

and found that χ
2
 = 14.3 for one parameter Poisson- Lindley 

distribution and χ
2
 = 12.3 for two parameter Poisson Lindley 

distribution, which is not a good fit. It can be seen that our 

proposed distribution is
 
better fit than the Shankar, R et al. 

(2012).
  

Paper ID: 20041501 2727



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 

Volume 4 Issue 4, April 2015 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

 
Figure 6: Observed and Fitted Frequency curves for table-4 

 

8.5. When we choose 𝛃 as integer equal to 3 

 

This data set is Student‟s (1907) historic data on 

Haemocytometer counts of cells used by Borah (1984) for 

fitting the Gegenbauer distribution. 

 
Let us fit (Eqation-6) using the method of moments. Here 

we get sample mean x  = 0.6825, n = 400 and       
 fi x i

2

n
 = 

1.2275 

Solving (Eqation-27) and (Eqation-28) we have, α  = 

5.285064369 and β  = 3.607056432 

Let take the integral part of β , i.e. β  = 3 

Using these estimators, we obtain the expected frequencies 

as shown in Table-5 

 

Table 5: Chi-Square Goodness-of-fit test for the proposed 

model PGD (Equation-6) 

X 𝑂𝑖  𝐸𝑖  
 𝑂𝑖

−  𝐸𝑖 
2 

 𝑂𝑖 −  𝐸𝑖 
2

𝐸𝑖
 

0 213 216 9 0.041666667 

1 128 120 64 0.533333333 

2 37 45 64 1.422222222 

3 18 14 16 1.142857143 

4 3 4 1 0.2 

5 

6 

1 = 4 

0 

1 = 5 

0 

Total   = 400 400  𝜒2 =3.340079365 

 
Interpretation and Conclusion 

 

The calculated value of Chi-Square is equal to 3.340079365. 

The tabulated value of Chi-Square for 2 d.f. at 5 % level of 

significance is 5.99 Thus the calculated value of Chi-Square 

is less than the tabulated value of Chi-Square. So we can say 

that our proposed distribution is a good fit 

 

Shankar, R.et al. (2012) has also fitted this data set by one 

parameter and two parameter Poisson-Lindley distribution 

and found that  χ
2
 = 14.3 for one parameter  Poisson- 

Lindley distribution  and χ
2
 = 12.3 for two parameter 

Poisson Lindley distribution, which is not a good fit. It can 

be seen that our proposed distribution is
 
better fit than the 

Shankar, R et al. (2012).
 
We observe that the estimated value 

of β does not give a better fit than when β is taken as the 

nearest integer of its estimated value. There may be some 

cases when estimated value of α and β may give better 

results and the decision regarding the model to be used 

should be taken on the basis of goodness of fit criteria. 

 

 

 
Figure 7: Observed and Fitted Frequency curves for table-5 
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9. Conclusion 
 

In view of the above discussions, we conclude that Poisson-

Gamma Distribution (PGD) may be used as a discrete 

survival model. 
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