Comparative Study: PTS & Iterative Flipping Method

Abhimanyu Thakur¹, Naveen Dhillon²

Department of Electronics and Communication Engineering, Ramgarhia Institute of Engineering & Technology, Phagwara, Punjab, India

Abstract: Orthogonal Frequency Division Multiplexing is one of the hopeful methods for accomplishing lofty downlink limits in upcoming cell & remote systems. The signals of OFDM are high PAPR (Peak to Average Power Ratio) of the send out signal and that is its significant issue. Due PAPR highness brings drawbacks similar to an augmented complication of the Analog to Digital and Digital to Analog converters & decreased proficiency of broadcasting recurrence power enhancer. The lofty crest of Orthogonal Frequency Division Multiplexing signal can be lessened by Peak to Average Power Ratio diminishment strategies. The Scheme of PTS (Partial Transmit Sequences) & iterative flipping are examined in this paper to decrease Peak to Average Power Ratio & evaluated with unusual method. Machine imitations outcome demonstrate that the mutually design attain to PAPR decreases, yet the outcome demonstrates that Partial Transmit Sequences design can recommend preferable PAPR decrease execution over the iterative flipping.

Keywords: Peak to Average Power Ratio (PAPR), Analog to Digital converters, Digital to Analog converters, Orthogonal Frequency Division Multiplexing (OFDM), Iterative Flipping (IF), Partial Transmit Sequence (PTS)

1. Introduction

OFDM is a method used for rapid data broadcast in wireless communication systems [1]. A significant issue connected with OFDM is its expansive PAPR, which degrades the system execution by presenting non-linearity in the devices, for example, power amplifiers (PAs). Keeping in mind the end goal to moderate nonlinear bending, direct high power intensifiers and simple to advanced converters with a substantial element extent are obliged, however such power enhancers are inefficient [2].

To lessen the PAPR of the OFDM signal, numerous methods have been planned in this way. These plans can be arranged into signal mutilation plans & signal scrambling plans. The signal bending plans lessen high crests specifically by contorting the signal preceding enhancement. Both cutting and commanding strategies are common signal contortion techniques to lower PAPR [3], [4]. However, these signal bending plan may origin huge in band & out-of-band bend, resulting in the dreadful conditions of the system performance [5].

Signal scuttling methods are diverse in how to scuttle the codes for the PAPR diminution. Some known scrambling techniques including SLM (Selective Mapping) [6], PTS [7], TR (Tone Reservation) [8], and SLM of Partial Tones [9]. In Partial Transmit Sequences proposal, the unusual data block is apportioned into various put out of joint sub blocks, & every sub block is considered by a stage variable to create diverse signals speaking to the similar data. Subsequently the signal with the most reduced PAPR is picked for transmission. The Partial Transmit Sequences method can be utilized to decrease the PAPR viably without signal bending. However the PTS requires a thorough hunt over all blends of permitted stage figures, the pursuit many-sided quality increments exponentially with the quantity of sub pieces. In this way, for bigger quantity of associate hinders, the Partial Transmit Sequences plan has lofty computational multifaceted nature. Consequently, a disentangled plan i.e. the iterative flipping calculation has been projected in [10], in which the unpredictability is fundamentally diminished; at the expense of deprivation in Peak to Average Power Ratio decrease execution.

To reduce the PAPR we used the PTS & Iterative Flipping (IF) methods in this paper.

2. Iterative Flipping (IF) Algorithm

The IF algorithm can be depicted as follow:

1. Firstly we have to partition the input data like X into M dislodge sub blocks to outline the half-done convey in order as expressed in the Partial Transmit Sequence method.
2. Secondly the Peak to Average Power Ratio is calculated by initializing $b^{(m)}$ to 1 on behalf of the entire m.
3. In third step the resulting Peak to Average Power Ratio is recalculate due to change in its 1^{st} bit, i.e. $b^{(1)} = -1$, $b^{(1)}$ is updated with -1 only if the new Peak to Average Power Ratio result is lesser than the prior; otherwise, $b^{(1)}$ is come back to 1.
4. These steps have to replicates in anticipation of each M bit to get discovered.

Clearly, in the IF method as talked about in [10], the complications of this algorithm diminishes to the quantity of subordinate pieces.

3. PAPR

Think about an Orthogonal Frequency Division Multiplexing system consisting of N modulated data symbols (subcarriers) from a scrupulous signaling collection, $X = [X_0, X_1, \ldots, X_{N-1}]$ signify the input data in an Orthogonal Frequency Division Multiplexing block. Every symbol in X is used to transform a

Volume 4 Issue 4, April 2015

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: 16041501

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY
subcarrier. Let \(f_k, \) \(k=0,1, \cdots, N-1, \) signify the \(n \)th subcarrier frequency. In the OFDM system, the subcarriers must be orthogonal to adjoining subcarriers, i.e. \(f_k = k \Delta f, \) where \(\Delta f = 1/(NT) \) and \(T \) is the symbol extent. Therefore, the Complex baseband of the OFDM symbol can be printed as:

\[
x(t) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} X_k e^{j2\pi k N t}, 0 \leq t < NT
\]

PAPR is characterized as the degree of the greatest to the normal force amid an Orthogonal Frequency Division Multiplexing symbol period.

\[
PAPR = \max_{0 \leq t < T} \frac{E[x(t)^2]}{E[x(t)]^2}
\]

where \(E[.] \) is the probability operator.

In put into practice, mainly systems contract with a discrete-time warning sign, thus we have to test the continuous-time signal \(x(t) \). for the reason that Nyquist tempo sampling possibly misses several signal peaks, oversampling by a cause of \(L \) is used to inexact the accurate PAPR of \(x(t) \), where \(L \) is an integer superior than 2. The \(L \)-time oversampled signal can be given by

\[
x_n = \frac{1}{\sqrt{L}} \sum_{k=0}^{N-1} X_k e^{j2\pink/LN}, n = 0,1,\ldots, LN-1
\]

where the oversampling causes \(L \geq 4 \) in a useful OFDM system [11]. From (3), the \(L \)-time oversampled samples can be obtained by performing \(LN \)-point contrary rapid Fourier transform (IFFT) on the data block \(X \) with \((L-1)N \) zero padding. For the discrete-time signal \(x_n \), the PAPR can be calculated as:

\[
PAPR = \max \left\{ \frac{E[x_n^2]}{E[x_n]^2} \right\}
\]

where \(E(\cdot) \) denotes the predictable value.

From the central limit theorem, for expansive number of estimations of \(N \), the genuine & nonexistent estimations of \(x(t) \) get to be Gaussian distributed. The amplitude of the Orthogonal Frequency Division Multiplexing signal, along these lines, has a Rayleigh division with 0 mean and a change of \(N \) era the difference of single composite sinusoid. The Complementary CCDF (Cumulative Distribution Function) is the possibility that the Peak to Average Power Ratio (exceeds a certain threshold \(PAPR_0 \),

\[
CCDF(PAPR(x(n))) = P_r(PAPR(x(n)) > PAPR_0, \ldots (5)
\]

Due to the self-determination of the \(N \) samples, the CCDF of the PAPR of a data block with Nyquist rate sampling is specified by

\[
P = P_r(PAPR(x(n)) > PAPR_0) = 1 - \left(e^{PAPR_0/N} \right)^N \quad (6)
\]

In this equation expect that the \(N \) time province signal samples are commonly free and uncorrelated and it is not exact for a little number of subcarriers. Hence, there have been numerous endeavors to determine further exact allocation of Peak to Average Power Ratio [12].

4. Partial Transmit Sequence Method

The Partial Transmit Sequence method is a capable Peak to Average Power Ratio lessening system, initially planned by Huber & Muller in [13]. From that point different interrelated credentials have been distributed. In this segment, we demonstrate 2 delegate Partial Transmit Sequence strategies, the 1st Partial Transmit Sequence system & Cimini & Sollenberger's IF procedure [10].

The block illustration of the Partial Transmit Sequence method is revealed in Fig. 1. In the Partial Transmit Sequence method, the put in data \(X \) is separated into \(M \) disjoint sub blocks

\[
X^{(m)} = [X_{0}^{(m)}, X_{1}^{(m)}, X_{2}^{(m)}, \ldots, X_{N}^{(m)}], m = 1,2,\ldots,M
\]

The entire the subcarrier positions which are exhibited in other sub pieces must be zero so that the sum of all the sub blocks compose unusual signal, i.e.

\[
X = \sum_{m=1}^{M} X^{(m)}
\]
\[x = \sum_{m=1}^{M} IFFT[b^{(m)}X^{(m)}] = \sum_{m=1}^{M} b^{(m)} IFFT[X^{(m)}] = \sum_{m=1}^{M} b^{(m)} x^{(m)} \] (8)

And

\[b^{(m)} \subseteq \Theta, \quad \Theta = \{e^{j\theta_1}, e^{j\theta_2}, ..., e^{j\theta_N} \} \] (9)

In this equation \(x^{(m)} \) is called PTS & \(\Theta \) is the situated together with \(V \) stage components. Presently, the target of discovering ideal blend of stage variables. Conversely, the inquiry unpredictability increments exponentially through the quantity of sub blocks [10].

To illustrate the PTS algorithm following steps has to be followed:
1. First partition the subcarriers of OFDM into \(M \) clusters.
2. Create the OFDM signals for all clusters.
3. Unite the OFDM signals \(M \) output through bi weighting factors.
4. Several optimization algorithms are used to generate the weighting factors.

To recuperate the data the receiver has to know the generation method in sequences.

5. Results

In this segment, we display reproduction results to demonstrate the execution of the Partial Transmit Sequence & IF (iterative flipping) procedures. We have use Matlab tool to get these results & following Table 1. Parameters have been measured for imitation reason:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value/Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over sampling factor (L)</td>
<td>4</td>
</tr>
<tr>
<td>Iteration</td>
<td>2000</td>
</tr>
<tr>
<td>No. of sub-carriers (N)</td>
<td>257</td>
</tr>
<tr>
<td>Intonation Method</td>
<td>BPSK</td>
</tr>
<tr>
<td>No. of sub-blocks (M)</td>
<td>2, 4, 8</td>
</tr>
</tbody>
</table>

In imitations, an Orthogonal Frequency Division Multiplexing method is well thought-out with \(N = 257, L = 4 \) & BPSK Modulation. The subcarriers are separated into \(M = 2, 4, 8 \) Sub blocks with contiguous subcarriers, respectively. For the iterative flipping scheme the phase factor is chosen \{1, -1\}.

Figure 2 to Figure 4 shows the chart for the Complementary CCDF (Cumulative Distribution Function) of Peak to Average Power Ratio in unusual, Partial Transmit Sequence and IF (iterative flipping) methods when \(M = 2, 4, 8 \) correspondingly. It indicates the possibility of a data block go above a certain threshold Peak to Average Power Ratio. PTS and iterative flipping methods can decrease the Peak to Average Power Ratio of Orthogonal Frequency Division Multiplexing Signals, yet the capacity is diverse. The PTS exhibit display preferred PAPR decrease execution over the IF method, however complexity is in excess of iterative flipping scheme.

Figure 2 demonstrates that when \(M = 2 \) sub blocks the Complementary CCDF (Cumulative Distribution Function) of Peak to Average Power Ratio in different strategy. For this situation, PTS scheme accomplish best PAPR diminishment then iterative scheme. While iterative scheme additionally decrease PAPR, however at some edge PAPR its execution is same as unique scheme. Since Figure 2, the Peak to Average Power Ratio diminishment execution of PTS plan, and iterative flipping scheme beats. The PAPR in unique plan, PTS-plan and iterative flipping plan are 8.9583db, 8.0499db, and 7.8422db, individually.

Figure 2: In PTS CCDFs value of PAPR, iterative, original methods with \(M = 2 \) sub blocks (\(N = 257, L = 4, \) BPSK modulation)

Figure 3 illustrates the Complementary CCDF (Cumulative Distribution Function) for \(M = 4 \), i.e. parallel to \(M = 2 \). PTS method has superior giving from the IF (iterative flipping) method. For original method, its Peak to Average Power Ratio is surrounded by 7.4709dB. The Peak to Average Power Ratio in PTS method, iterative method are 6.9698dB, 7.3285dB, correspondingly. In this figure 3, act of Partial Transmit Sequence method & iterative method is much superior from the prior (\(M = 2 \)).

Figure 3: CCDFs of Peak to Average Power Ratio in Partial Transmit Sequence, iterative, inventive methods with \(M = 4 \) sub blocks (\(N = 257, L = 4, \) BPSK intonation).
Figure 4 illustrates the case of $M = 8$ sub blocks. We examine a few alterations in it. The PTS method shows superior concert than IF (Iterative flipping) method as contrast to prior for $M = 2, 4$.

![Figure 4: CCDFs of PAPR in PTS, iterative, original methods among $M = 8$ ($N = 257, L = 4$, BPSK intonation).](image)

For inventive method, its PAPR is 7.8711dB. The PAPRs in PTS method & iterative method are 6.1080dB, 6.9145dB, correspondingly.

From the imitation outcome, it is clear that PTS method can attain additional piercingly PAPR diminution as the subordinate blocks enlarge, while act of IF (iterative flipping) method is somewhat tainted with no. of sub-blocks enlarge. Thus PTS method illustrate better PAPR diminution concert.

6. Conclusion

For Peak to Average Power Ratio lessening in Orthogonal Frequency Division Multiplexing methods Partial Transmit Sequence & Iterative flipping method are used in this paper. The imitation outcome shows that the act of both the methods enlarges and both the Partial Transmit Sequence & IF (iterative flipping) methods can lower the PAPR while the no. of sub - block boosts. We evaluate the PTS methods among the original scheme and IF algorithm to calculate their PAPR reduction performance. It demonstrates that the PTS scheme put forward better PAPR diminution than iterative flipping method.

References

