An Efficient Buffer less Rank Based Fault Tolerance Network on Chip System

Subodh Kakran

M. Tech Scholar, Department of Computer Science and Networking, Sharda University, Greater NOIDA, India

Abstract: Network-on-chip (NoC) designs are based on a compromise among the most important elements viz. power dissipation, latency and the balance is usually defined at design time. In the research work we have used Efficient Rank Based fault-tolerant deflection routing (FTDR) algorithm to tolerate faults. The research is intended to reduce the router area by avoiding the table based routing path computation. The Efficient Rank Based algorithm has been proposed in the research to reduce the area and the power consumption of the overall Network on Chip. For Rank-Based fault tolerant deflection routing we provide a particular rank to our routers according to our NoC routing path(s). It does not require routing table to update completed path and switching path.

Keywords: NoC, FTDR, Rank Based Algorithm, FTDR-H, Fault Tolerance NoC

1. Introduction

As the technology scales down, the gate delay decreases, but the wire delay increases relatively and this ecumenical wire delay becomes the main factor which can decide the overall performance. Arduous timing closure becomes the main quandary among many design issues which is caused by long ecumenical wire delay. In order to solve these long ecumenical wire delay and scalability issues, many studies suggested the utilization of a packet predicated communication network which is kenned as Network-on-Chip (NoC). NoC approach has emerged as a promising solution for on-chip communications to enable integrating sundry processors and on-chip recollections into a single chip.

This paper proposes an efficient and fault-tolerant way out for Network on Chip, including an on-line fault-diagnosis mechanism to detect both transient and permanent faults, a hybrid automatic repeat request, and forward error correction link-level error control scheme to handle transient faults and a reinforcement-learning-based fault-tolerant deflection routing (FTDR) algorithm to tolerate permanent faults without deadlock and livelock. A hierarchical-routing-table-based algorithm (FTDR-H) is also presented to reduce the area overhead of the FTDR router. Synthesized results show that compared with the FTDR router, the FTDR-H router can reduce the area by 27% in an 88 network. Simulation results demonstrate that compared with the FTDR router, the FTDR-H router can reduce the area by 27% in an 88 network. Simulation results demonstrate that under synthetic workloads, in the presence of permanent link faults, the throughput of an 88 network with FTDR and FTDR-H algorithms are 14% and 23% higher on average than that with the fault-on-neighbor (FoN) aware deflection routing algorithm and the cost-based deflection routing algorithm, respectively. Under real application workloads, the FTDR-H algorithm achieves 20% less hop counts on average than that of the FoN algorithm. For transient faults, the performance of the FTDR router can achieve graceful degradation even at a high fault rate. We also implement the fault-tolerant deflection router which can achieve 400 MHz in TSMC 65-nm technology.

2. NoC Architecture

The fig. given below describes the routing scheme in a network on chip architecture. The NoC architecture is based on Nostrum NoC, which is a 2D mesh topology. Each process element (PE) is attached to a switch (S), as shown in Fig. 1.

![Figure 1: Routing in NoC](image)

The difference from the ordinary 2D mesh is that the boundary output is connected to the input of the same switch, which can be used as a packet buffer. All incoming packets are prioritized based on its hop counts which record the number of hops the packet has been routed. The switch makes routing decision for each arriving packet from the highest priority to the lowest. If a desired output port has already been occupied by a higher priority packet, a free port with the smallest stress value, which is the traffic load of neighbor switches in last 4 cycles, will be chosen, which means the packet has to be detected.

Volume 4 Issue 3, March 2015

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: SUB158115
3. Rank Based Routing

The fig. given below depicts the rank based routing architecture for the network on chip system.

Data will be transferred through the highest Rank port and the Rank will be decided according to neighbouring conditions.

4. Methodology

The Efficient Rank Based routing algorithm is proposed for a fault tolerant network on chip system. The simulations are done on the ModelSim and the results are shown through the waveforms. The hardware code is written in Verilog HDL language (Digital circuit design).

5. Results

6. Congestion Conditions

Condition 1 - When data input on R5 from both the sides viz. SOUTH and NORTH
Condition-2 When data input on R5 from three sides viz. SOUTH, WEST and NORTH.

Figure 8: Congestion Condition second

Figure 9: Output waveforms for congestion condition first

Figure 10: Output Waveforms for congestion condition second

7. Conclusion

In this paper, we provided an Efficient Rank Based fault-tolerant solution for a bufferless NoC to protect it from faults and achieved low latency. It provides the required communications at a low cost and system will be scalable. The conventional FTDR routing algorithms is replaced with the enhanced rank based routing algorithm to prevent the routing from congestion and latency while data transmission and reception.

References