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Abstract: In this paper we consider identification and estimation of a censored nonparametric location scale model. We first show that 

in the case where the location function is strictly less than the (fixed) censoring point for all values in the support of the explanatory 

variables, then the location function is not identified anywhere. In contrast, if the location function is greater or equal to the censoring 

point with positive probability, then the location function is identified on the entire support, including the region where the location 

function is below the censoring point. In the latter case we propose a simple estimation procedure based on combining conditional 

quantile estimators for three distinct quantiles. The new estimator is shown to converge at the optimal nonparametric rate with a 

limiting normal distribution. A small scale simulation study indicates that the proposed estimation procedure performs well in finite 

samples. We also present an empirical application on STIFIN Test and GPA prediction using example data test. The survival curve for 

benefit receipt based on our new estimator closely matches the Kaplan-Meier estimate in the non-censored region and is relatively flat 

past the censoring point. We find that incorrect distributional assumptions can significantly bias the results for estimates past the 

censoring point. 
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1. Introduction 
 

The nonparametric location-scale model is usually of the 

form: 

 
where xi is an observed d−dimensional random vector and єi 

is an unobserved random variable, distributed independently 

of xi, and assumed to be centered around zero in some sense. 

The functions μ(·) and σ(·) are unknown. In this paper, we 

consider extending the nonparametric location-scale model 

to accommodate censored data. The advantage of our 

nonparametric approach here is that economic theory rarely 

provides any guidance on functional forms in relationships 

between variables.  

 

To allow for censoring, we work within the latent dependent 

variable framework, as is typically done for parametric and 

semiparametric models. We thus consider a model of the 

form: 

 
 

where  is a latent dependent variable, which is only 

observed if it exceeds the fixed censoring point, which we 

assume without loss of generality is 0. We consider 

identification and estimation of μ(xi) after imposing the 

location restriction that the median of єi = 0. We emphasize 

that our results allow for identification of μ(xi) on the entire 

support of xi. This is in contrast to identifying and 

estimating μ(xi) only in the region where it exceeds the 

censoring point, which could be easily done by extending 

Powell’s(1984) CLAD estimator to a nonparametric setting. 

One situation is when the data set is heavily censored. In this 

case, μ(xi) will be less than the censoring point for a large 

portion of the support of xi, requiring estimation at these 

points necessary to draw meaningful inference regarding its 

shape. 

 

Our approach is based on a structural relationship between 

the conditional median and upper quantiles which holds for 

observations where μ(xi)≥0. This relationship can be used to 

motivate an estimator for μ(xi) in the region where it is 

negative. Our results are thus based on the condition 

 
where PX(·) denotes the probability measure of the random 

variable xi. 

 

The paper is organized as follows. The next section explains 

the key identification condition, and motivates a way to 

estimate the function μ(·) at each point in the support of xi. 

Section 3 introduces the new estimation procedure and 

establishes the asymptotic properties of this estimator when 

the identification condition is satisfied. Section 4 considers 

an extension of the estimation procedure to estimate the 

distribution of the disturbance term. Section 5 explores the 

finite sample properties of the estimator through the results 

of a simulation study. Section 6 presents an empirical 

application STIFIN test, in which we estimate the survivor 

function in the region beyond the censoring point. Section 7 

concludes by summarizing results. 

 

2. Estimation Procedure and Asymptotic 

Properties 
 

2.1 Estimation Procedure 

 

In this section we consider estimation of the function μ(·). 

Our procedure will be based on our identification results in 

the previous section, and involves nonparametric quantile 

regression at different quantiles and different points in the 
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support of the regressors. Our asymptotic arguments are 

based on the local polynomial estimator for conditional 

quantile functions introduced in Chaudhuri(1991a,b). For 

expositional ease, we only describe this nonparametric 

estimator for a polynomial of degree 0, and refer readers to 

Chaudhuri(1991a,b), Chaudhuri et al.(1997), Chen and 

Khan(2000,2001), and Khan(2001) for the additional 

notation involved for polynomials of arbitrary degree. 

 

First, we assume the regressor vector xi can be partitioned as 

(xi
ds

,x
c
) where the dds−dimensional vector xi

ds 
is discretely 

distributed, and the dc-dimensional vector xi
c
 is continuously 

distributed. 

We let Cn(xi) denote the cell of observation xi and let hn 

denote the sequence of bandwidths which govern the size of 

the cell. For some observation xj , j ≠ i, we let xj ϵ Cn(xi) 

denote that xj
(ds)

=xi
(ds)

 and xj
©
 lies in the dc-dimensional cube 

centered at xi
c
 with side length 2hn. 

 

Let I[·] be an indicator function, taking the value 1 if its 

argument is true, and 0 otherwise. Our estimator of the 

conditional α
th

 quantile function at a point xi for any α ϵ (0, 

1) involves α-quantile regression (see Koenker and Bassett 

(1978)) on observations which lie in the defined cells of xi. 

Specifically, let θ minimize: 

 
Our estimation procedure will be based on a random sample 

of n observations of the vector (yi,xi
’
)
’
 and involves applying 

the local polynomial estimator at three stages. Throughout 

our description, ˆ· will denote estimated values. 

 

1) Local Constant Estimation of the Conditional Median 

Function. In the first stage, we estimate the conditional 

median at each point in the sample, using a polynomial of 

degree 0. We will let h1n denote the bandwidth sequence 

used in this stage. Following the terminology of Fan(1992), 

we refer to this as a local constant estimator, and denote the 

estimated values by ˆq0.5(xi). Recalling that our 

identification result is based on observations for which the 

median function is positive, we assigns weights to these 

estimated values using a weighting function, denoted by 

w(·). Essentially, w(·) assigns 0 weight to observations in 

the sample for which the estimated value of the median 

function is 0, and assigns positive weight for estimated 

values which are positive. 

 

2) Weighted Average Estimation of the Disturbance 

Quantiles In the second stage, the unknown quantiles cα1 , 

cα2 are estimated (up to the scalar constant _c) by a weighted 

average of local polynomial estimators of the quantile 

functions for the higher quantiles α1, α2. In this stage, we 

use a polynomial of degree k, and denote the second stage 

bandwidth sequence by h2n. 

We let ˆc1, ˆc2 denote the estimators of the unknown 

constants  and define them 

as:  

where τ(xi) is a trimming function, whose support, denoted 

by Xτ , is a compact set which lies strictly in the interior of 

X. The trimming function serves to eliminate“boundary 

effects” that arise in nonparametric estimation. We use the 

superscript (p) to distinguish the estimator of the median 

function in this stage from that in the first stage. 

 

3) Local Polynomial Estimation at the Point of Interest 

Letting x denote the point at which the function μ(·) is to be 

estimated at, we combine the local polynomial estimator, 

with polynomial order k and bandwidth sequence h3n, of the 

conditional quantile function at x using quantiles α1, α2, 

with the estimator of the unknown disturbance quantiles, to 

yield the estimator of μ(x): 

 
 

3. Estimating the Distribution of ϵi 
 

As mentioned in Section 2, the distribution of the random 

variable ϵi is identified for all quantiles exceeding α0≡ inf{α: 

supxϵX qα(x) > 0}. In this section we consider estimation of 

these quantiles, and the asymptotic properties of the 

estimator. Estimating the distribution of ϵi is of interest for 

two reasons. First, the econometrician may be interested in 

estimating the entire model, which would require estimators 

of σ(xi) and the distribution of ϵi as well as of μ(xi). Second, 

the estimator can be used to construct tests of various 

parametric forms of the distribution of ϵi, and the results of 

these tests could then be used to adopt a (local) likelihood 

approach to estimating the function μ(xi). 

 

Before proceeding, we note that the distribution of ϵi is only 

identified up to scale, and we impose the scale normalization 

that c0.75 − c0.25 ≡ 1. We also assume without loss of 

generality that α0 ≤ 0.25. To estimate cα for any α≥α0, we let 

α- = min(α, 0.5) and define our estimator as 

 
The proposed estimator, which involves averaging 

nonparametric estimators, will converge at the parametric ( 

√n) rate and have a limiting normal distribution, as can be 

rigorously shown using similar arguments found in Chen 

and Khan(1999b). 

 

4. Monte Carlo Results 
 

In this section the finite sample properties of the proposed 

estimator are explored by way of a small scale simulation 

study. We simulated from designs of the form: 
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where xi was a random variable distributed uniformly 

between -1 and 1, ϵi was distributed standard normal, and the 

scale function σ(xi) was set to e
0.15xi

 . We considered four 

different functional forms for μ(xi) in our study: 

 
where the constants C1, C2 were chosen so that the 

censoring level was 50%, as it was for the other two designs. 

We adopted the following data-driven method to select the 

quantile pair. For a given point x, we note that the estimator 

requires that qα1(x), qα2(x) both be strictly positive for 

identification, requiring that the quantiles be sufficiently 

close to 1. On the other hand, efficiency concerns would 

suggest that the quantiles not be at the extreme, as the 

quantile regression estimator becomes imprecise. We thus 

let the probability of being censored, or the “propensity 

score” (see Rosenbaum and Rudin(1983)) govern the choice 

of quantiles for estimating the function μ(·) at the point x. 

Letting di denote an indicator function which takes the value 

1 if an observation is uncensored, we note that 

 
Thus if one knew the propensity score value, identification 

would require that α
*
 be a lower bound for the choice of 

quantile pair. The propensity score can be easily estimated 

using kernel methods, suggesting an estimator of α
*
: 

 
Our proposed choice of quantile pair takes into account this 

lower bound as well as the efficiency loss of estimating 

quantiles at the extreme. We set: 

 
which divides the interval [ˆα

*
, 1] into three equal spaces. In 

implementing this procedure in the Monte Carlo study, the 

propensity scores were estimated using a normal kernel 

function and a bandwidth of n
−1/5

. 

For the quantile estimators, a local constant was fit in the 

first stage, using a bandwidth of n
−1/5

, and a local linear 

estimator was used in the second and third stages, using a 

bandwidth of the form kn
−1/5

. The constant k was selected 

using the “rule of thumb” approach detailed on page 202 in 

Fan and Gijbels(1996). 

 

 

 

 

5. Case Studies 
 

5.1 Application Tobit regression to STIFIN Test 

 

Consider the situation in which we have a measure of 

academic aptitude (scaled 200-800) which we want to model 

using reading and math test scores, as well as, the type of 

program the student is enrolled in (academic, general, or 

vocational). The problem here is that students who answer 

all questions on the academic aptitude test correctly receive 

a score of 800, even though it is likely that these students are 

not "truly" equal in aptitude. The same is true of students 

who answer all of the questions incorrectly. All such 

students would have a score of 200, although they may not 

all be of equal aptitude. 

 

 
 

Looking at the above histogram, we can see the censoring in 

the values of apt, that is, there are far more cases with scores 

of 750 to 800 than one would expect looking at the rest of 

the distribution. Below is an alternative histogram that 

further highlights the excess of cases where apt=800. In the 

histogram below, the breaks option produces a histogram 

where each unique value of apt has its own bar (by setting 

breaks equal to a vector containing values from the 

minimum of apt to the maximum of apt). Because apt is 

continuous, most values of apt are unique in the dataset, 

although close to the center of the distribution there are a 

few values of apt that have two or three cases. The spike on 

the far right of the histogram is the bar for cases where 

apt=800, the height of this bar relative to all the others 

clearly shows the excess number of cases with this value. 
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Next we'll explore the bivariate relationships in our dataset. 

## read math apt 

## read 1.0000 0.6623 0.6451 

## math 0.6623 1.0000 0.7333 

## apt 0.6451 0.7333 1.0000 

 
 

5.2 Application Interval Regression to GPA Prediction 

 

We wish to predict GPA from teacher ratings of effort, 

writing test scores and the type of program in which the 

student was enrolled (vocational, general or academic). The 

measure of GPA is a self-report response to the following 

item:  

Select the category that best represents your overall GPA. 

 0.0 to 2.0 

 2.0 to 2.5 

 2.5 to 3.0 

 3.0 to 3.4 

 3.4 to 3.8 

 3.8 to 4.0 

 

And These are the Dataset: 

 lgpa ugpa  

 1. 2.5 3  

 2. 3.4 3.8  

 3. 2.5 3  

 4. 0 2  

 5. 3 3.4  

 6. 3.4 3.8  

 7. 3.8 4  

 8. 2 2.5  

 9. 3 3.4  

 10. 3.4 3.8  

 11. 2 2.5  

 12. 2 2.5  

 13. 2 2.5  

 14. 2.5 3  

 15. 2.5 3  

 16. 2.5 3  

 17. 3.4 3.8  

 18. 2.5 3  

 19. 2 2.5  

 20. 3 3.4  

 21. 3.4 3.8  

 22. 3.8 4  

 23. 2 2.5  

 24. 3 3.4  

 25. 3.4 3.8  

 26. 2 2.5  

 27. 2 2.5  

 28. 2 2.5  

 29. 2.5 3  

 30. 2.5 3  

Note that there are two GPA responses for each observation, 

lgpa for the lower end of the interval and ugpa for the upper 

end. 
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Finally, a summary of the observations is given. In this 

dataset, no observations are left- or right-censored, no 

observations are uncensored, and all 30 observations are 

interval censored. 

 

6. Conclusion 
 

a) In the output above, the first thing we see is the call, this 

is R reminding us what the model we ran was, what 

options we specified, etc. 

 The table labeled coefficients gives the coefficients, 

their standard errors, and the z-statistic. No p-values 

are included in the summary table, but we show how to 

calculate them below. Tobit regression coefficients are 

interpreted in the similar manner to OLS regression 

coefficients; however, the linear effect is on the 

uncensored latent variable, not the observed outcome.  

 For a one unit increase in read, there is a 2.6981 point 

increase in the predicted value of apt. 

 A one unit increase in math is associated with a 

5.9146 unit increase in the predicted value of apt. 

 The terms for prog have a slightly different 

interpretation. The predicted value of apt is -46.1419 

points lower for students in a vocational program than 

for students in an academic program. 

 The coefficient labeled "(Intercept):1" is the intercept 

or constant for the model. 

 The coefficient labeled "(Intercept):2" is an ancillary 

statistic. If we exponentiate this value, we get a 

statistic that is analogous to the square root of the 

residual variance in OLS regression. The value of 

65.6773 can compared to the standard deviation of 

academic aptitude which was 99.21, a substantial 

reduction. 

b) The final log likelihood, -1041.0629, is shown toward the 

bottom of the output, it can be used in comparisons of 

nested models. 

 For a one unit increase in read, there is a 2.7 point 

increase in the predicted value of apt. 

 A one unit increase in math is associated with a 5.91 

unit increase in the predicted value of apt. 

 The terms for prog have a slightly different 

interpretation. The predicted value of apt is 46.14 

points lower for students in a vocational program 

(prog=3) than for students in an academic program 

(prog=1).  

 

The tobit model, also called a censored regression model, is 

designed to estimate linear relationships between variables 

when there is either left- or right-censoring in the dependent 

variable (also known as censoring from below and above, 

respectively). Censoring from above takes place when cases 

with a value at or above some threshold, all take on the 

value of that threshold, so that the true value might be equal 

to the threshold, but it might also be higher. In the case of 

censoring from below, values those that fall at or below 

some threshold are censored.  

 

Interval regression is used to model outcomes that have 

interval censoring. In other words, you know the ordered 

category into which each observation falls, but you do not 

know the exact value of the observation. Interval regression 

is a generalization of censored regression. 
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