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Abstract: Cyber systems play a critical role in improving the efficiency and reliability of power system operation and ensuring the 

system remains within safe operating margins. An adversary can inflict severe damage to the underlying physical system by 

compromising the control and monitoring applications facilitated by the cyber layer. There is a growing need for cyber-attack-resilient 

control techniques that look beyond traditional cyber defense mechanisms to detect highly skilled attacks. In this paper, we make the 

following contributions. We first demonstrate the impact of data integrity attacks on Automatic Generation Control (AGC) on power 

system frequency and electricity market operation. We propose a general framework to the application of attack resilient control to 

power systems as a composition of smart attack detection and mitigation. Finally, we develop a model-based anomaly detection and 

attack mitigation algorithm for AGC. We evaluate the detection capability of the proposed anomaly detection algorithm through 

simulation studies. Our results show that the algorithm is capable of detecting scaling and ramp attacks with low false positive and 

negative rates. The proposed model-based mitigation algorithm is also efficient in maintaining system frequency within acceptable limits 

during the attack period. 
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1. Introduction 
 

The scope of cyber attacks discovered in Industrial Control 

Systems (ICS) has revealed the level of sophistication of 

attackers. Firstly, recent cases of attacks (e.g., Stuxnet) have 

revealed that these attacks have been specifically written for 

ICS . Secondly, the attacks target specific critical control 

applications within the control system environment. This 

shows that sophisticated attackers have thorough knowledge 

of not only the control and automation computer systems 

and their vulnerabilities, but they also possess an 

understanding of the dynamics of the physical system to 

ensure maximum impact. 

 

Intrusion Detection Systems (IDS) that classify data packets 

as true or anomalies are popularly used in computer systems 

to ascertain data integrity. The implications of a poor IDS in 

the IT environment might not be very serious. However, in 

the SCADA environment where false negatives are 

unacceptable and a low false positive rate is desired, poor 

IDS could cause serious problems to the dependent physical 

process. IDS solutions catering specifically to SCADA 

systems are still in early days of development. Intrusion 

detection systems are traditionally classified into signature-

based detection and anomaly-based detection. Signature-

based IDS look for known patterns of malicious activity. 

The database of the IDS is constantly updated with new 

attack signatures as and when they are discovered. 

Anomaly-based IDS, however, do not look to identify the 

actual sequence of intrusion, but look for deviations in the 

observed data. These IDS usually learn the normal behavior 

of the system based on statistical profiling. During real-time 

operation, the observations are compared to the learnt model 

and any deviation is marked as an anomaly. Most IDS in the 

IT domain are signature-based as there is an abundance of 

signatures available for this domain. However, in SCADA 

systems, the protocols, networks and architectures are 

unique to the environment. A limited signature database 

could make the IDS blind to certain attacks thus making it 

ineffective. The Automatic Generation Control (AGC) is a 

wide-area frequency control application that receives power 

flow and frequency measurements from remote sensors. It 

ensures system frequency remains within acceptable bounds 

and power ex-change between adjacent control areas is 

limited to scheduled value. This paper explores the potential 

impact of smart attacks on AGC. We also present an attack 

resilient control framework that employs an anomaly-based 

IDS and mitigation to maintain system stability during the 

attack period. 

 

2. Literature Survey 
 

This section reviews some of the related work followed by 

discussing their connections and differences with the 

proposed approach. 

 

S. Sridhar and G. Manimara’8n introduced the impact of 

data integrity attacks directed at the AGC on operating 

frequency stability. 

 

C-W. Ten and C-C. Liu discuss the impact of cyber attack 

on a power system in terms of load loss and the impact of 

cyber attacks on the total generation in a system through a 

graph based model. 

 

V. Chandona , A. Banegree and V. Kumar have consolidated 

a classification of anomaly detection techniques and grouped 

this research efforts appropriately.  
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3. Control System Attack Model  
 

 
Figure 1: Control System Model 

 

In automated control systems (Fig. 1), the control center 

accepts measurements y(t) as input from field devices and 

processes them to obtain the output control signal u(t). A 

smart attacker could manipulate measurements such that any 

operational decision made based on these measurements 

could trigger control actions that are unwarranted for the 

true syste’8m state. This could in turn cause instabilities in 

the underlying physical system or force the system to 

operate at uneconomical operating conditions due to non-

optimal control actions. The need is for attack resilient 

control systems that are able to detect the presence of 

malicious data. 

 

Following attacks on power system stability and electricity 

market operation represents the control system model. 

 

1. Scaling Attack: 

A scaling attack involves modifying true measurements to 

higher or lower values depending on the scaling attack 

parameter λs. 

 
 

2. Ramp Attack: 

Ramp attacks involve gradual modification of true 

measurements by the addition of λr·t, a ramp function that 

gradually increases/decreases with time 

 
 

3. Pulse Attack 

As opposed to a scaling attack, where measurements are 

modified to higher/lower values during the entire duration of 

the attack, this type of attack involves modifying 

measurements through temporally-spaced short pulses with 

attack parameter λp . 

  

4. Random Attack 

This attack involves the addition of positive values returned 

by a uniform random function to the true measurements. The 

upper (a) and lower (b) bounds for selection are provided to 

the function as an input 

 
. 

4. Attack Resilient Control for Power Systems 
 

The notion of attack resilient control for ICS was first 

presented. With reference to the cyber-attacks context, we 

define attack resilient control as a combination of smart 

attack detection and mitigation. Smart attack detection, for 

example, could be implemented through domain-specific 

anomaly detection algorithms that verify the integrity of 

received measurements based on simulated measurements 

obtained from equations that govern the functioning of the 

underlying physical system. Smart mitigation techniques 

should have the ability to function using forecasts when 

measurements cannot be trusted. 

 

A. Anomaly Detection Engine 

 

• Step 1: Density Estimation 

Before every hour of operation, the anomaly detection 

engine receives the load forecast for the next hour. Based on 

this information and the generation schedule, an “ACE 

forecast” for the next hour of operation is made. The 

forecasted ACE(ACEF) values are then fed into a Kernel 

Density Estimator module. The density estimator constructs 

a probability density ƒ(ACEF) .The probability of a 

particular range of ACEF values is obtained by integrating 

ƒ(ACEF) between the range. The probability density helps 

identify the range of ACE values that are most probable 

during the next hour of operation. 

 

• Step 2: Anomaly Detection 

A bound δ1 that corresponds to the probability of a range of 

ACE values, that is the area under the density graph, is 

specified to classify anomalies from true values. This is one 

of the tuning parameters of the anomaly detection engine. If 

δ1 = 90% the anomaly detection algorithm identifies the 

range of ACEF values,[ACEF min, ACEF max] that has a 

probability of 0.9. The range is calculated from the 

following equation. 
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B. Model Base Attack Mitigation 

 

 
 

Figure 2: Generation of ACEF 

 

In scenarios where the meters or communication channels to 

the control center are compromised, the anomaly detection 

algorithm will be effective in identifying bad data. Under 

such circumstances, measurements from field sensors can no 

longer be trusted. The control center will be “flying blind” 

while trying to match the load and generation. The need is to 

make use of a technique that makes an educated guess based 

on system knowledge and appropriately issues ACE 

commands to generators without need for measurements. 

Real-time load forecasts are calculated using techniques 

such as regression models, neural networks and statistical 

learning algorithms. These approaches take into account 

variables that include weather forecasts and time factors 

(time of the day, year, etc.) to arrive at a load forecast. 

 

5. False Positive And False Negative Analysis 
 

1. False positive analysis 

 

 
Figure 3: False Positive Analysis 

 

Fig.3 presents the variation of false negative rate for 

different values of δ1 and δ2 . As the value of δ1 increases 

from 0.8 to 0.99, the false positive rate decreases. This is 

because, at lower values of δ1, even true ACE values are also 

identified as anomalies as they lie outside the, [ACEF min, 

ACEF max] range. The FP rate beyond δ1=0.92 is minimum at 

zero. As in the case of δ1, the FP rate decreases with as is 

varied between 0.01 and 0.08. The FP rate is significantly 

high in the region δ2 <0.03. As the bound δ2 is strict at this 

point, the condition Ѱ> δ2 is satisfied even for true 

measurements. The FP rate is zero in the region δ2 >0.049. 

1. False Negative Analysis 

Fig. 4 presents the variation of false negative rate for 

different values of δ1 and δ2 . At a value of δ1=0.8 , the FN 

rate is non-zero at 0.14. This is because, even with a narrow 

[ACEF min, ACEF max] band, some measurements anomalous 

introduced by the ramp attack template escape detection. As 

the value of δ1 is increased from 0.8 to 0.99, the band [ACEF 

min, ACEF max] widens. With this, more anomalous 

measurements introduced by the ramp attack template 

escape detection. This can be observed with the spike in FN 

rate after δ1=0.85. Scaling attack measurements are detected 

for all values of δ1. 

 

 
Figure 4: False Negative Analysis 

 

6. Conclusion 
 

In this paper, we showed the impacts of data integrity 

attacks on AGC operation. It was observed that scaling, 

ramp, pulse and random attacks severely affected power 

system stability and market operation. We proposed the 

notion of attack resilient control as a combination of smart 

attack detection and mitigation. Results from simulation 

studies have shown that the algorithm is efficient in 

mitigating attacks and maintaining the system within safe 

operating bounds. Our future work includes developing 

mitigation strategies for attacks that impact electricity 

market operation through AGC and coordinated cyber 

attacks on power system control. 
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