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Abstract: One-to-many and many-to-many data linkage are important in data mining. In earlier works data linkage is performed 

among entities of the same type. To link between matching entities of different types in larger datasets a new one-to-many and many to 

many data linkage method with MapReduce is proposed that links between entities of same and different natures. The proposed method 

is based on a one-class clustering tree (OCCT) that characterizes the entities that should be linked together. With development of the 

information technology, the scale of data is increasing quickly. The massive data poses a great challenge for data processing and 

classification. In order to classify the data, there were several algorithm proposed to efficiently cluster the data.  This project deals with 

scalable random forest algorithm for classifying the advertisement benchmark datasets.  
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1. Introduction 
 

Data linkage is one of the important task in data mining. It is 

of two kinds: one-to –one, one-to-many and many to many. 

One-to-one data linkage associates one entity with a 

matching entity in another data set. One-to-many data 

linkage associates an entity with a group of matching entities 

from another data set. Many-to-many data linkage associates  

group of entities from one data set with  group of matching 

entities from another data set. In this paper many-to-many 

data linkage is implemented with MapReduce framework. 

 

The massive data poses a great challenge for data processing 

and classification. In order to classify the data, there were 

several algorithm proposed to efficiently cluster the data. 

One among that is the random forest algorithm, which is 

used for the feature subset selection. The feature selection 

involves identifying a subset of the most useful features that 

produces compatible results as the original entire set of 

features. It is achieved by classifying the given data. The 

efficiency is calculated based on the time required to find a 

subset of features, the effectiveness is related to the quality 

of the subset of features. The existing system deals with fast 

clustering based feature selection algorithm, which is proven 

to be powerful, but when the size of the dataset increases 

rapidly, the current algorithm is found to be less efficient as 

the clustering of datasets takes quiet more number of time.  

 

Hence the new method of implementation is proposed in this 

project to efficiently cluster the data and persist on the back-

end database accordingly to reduce the time. It is achieved 

by scalable random forest algorithm. The Scalable random 

forest is implemented using Map Reduce Programming (An 

implementation of Big Data) to efficiently cluster the data.  

 

It works on two phases, the first step deals with the gathering 

the datasets and persisting on the datastore and the second 

step deals with the clustering and classification of data.  This 

process is completely implemented using Google App 

Engine’s hadoop platform, which is a widely used open-

source implementation of Google's distributed file system 

using MapReduce framework for scalable distributed 

computing or cloud computing. Hadoop MapReduce is a 

software framework for distributed processing of large data 

sets. It is a sub-project of the Apache Hadoop project. The 

framework takes care of scheduling tasks, monitoring them 

and re-executing failed tasks. The primary objective of 

MapReduce is to split the input data set into independent 

chunks that are processed in a completely parallel manner.  

 

The Hadoop MapReduce framework sorts the outputs of the 

maps, which are then input to the reduce tasks. Both the 

input and the output of the job are stored in a file system. 

The proposed method with MapReduce links between the 

entities using a One-Class Clustering Tree. A clustering tree 

is a tree contains a cluster in each of the leaves instead of a 

single classification. Each cluster is generalized by a set of 

rules that is stored in the appropriate leaf. One-class 

clustering tree is implemented with the help of MapReduce 

in parallel. Clustering tree assigns each linkage task to 

mapper class. Master node in the mapper assigns the work to 

slaves. Slaves in turn completes the work and returns the 

result to master node. The reducer class combines the 

intermediate results from mapper class to provide a complete 

clustering tree. As clustering tree is implemented in a parallel 

and distributed environment it reduces the execution time. 

The objectives of the paper is threefold:  

 

1) To implement one-to-many and many–to-many data 

linkage 

2) To make data linkage for larger datasets more efficient 

3) To execute data linkage in a parallel and distributed 

environment using MapReduce. 

 

2. Related Work 
 

2.1 Record linkage using Map Reduce  

 

A MapReduce job has three stages: map, shuffle, and reduce. 

Each stage in the sequence must complete before the next 

one can run. Intermediate data is stored temporarily between 

the stages. 
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The data flow for a MapReduce job looks like this: 

 
 

2.2 Map 

 

The MapReduce library includes a Mapper class that 

performs the map stage. The map stage uses an input reader 

that delivers data one record at a time. The library also 

contains a collection of Input classes that implement readers 

for common types of data. You can also create your own 

reader, if needed. 

 

The map stage uses a map() function that you must 

implement. When the map stage runs, it repeatedly calls the 

reader to get one input record at a time and applies the map() 

function to the record. 

 

The implementation of the map() function depends on the 

kind of job you are running. When used in a Map job, the 

map () function emits output values. When used in a map 

reduce job, the map() function emits key-value pairs for the 

shuffle stage. When emitting pairs for a MapReduce  job, the 

keys do not have to be unique. The same key can appear in 

many pairs.  

 

2.3 Shuffle 

 

The shuffle stage first groups all the pairs with the same key 

together and then outputs a single list of values for each key: 

If the same key-value pair occurs more than once, the 

associated value will appear multiple times in the shuffle 

output for that key. Also note that the list of values is not 

sorted. The shuffle stage uses a Google Cloud Storage 

bucket, either the default bucket or one that you can specify 

in your setup code. 

 

2.4 Reduce 

 

The MapReduce library includes a Reducer class that 

performs the reduce stage. The reduce stage uses a reduce() 

function that you must implement. When this stage executes, 

the reduce() function is called for each unique key in the 

shuffled intermediate data set. The reduce function takes a 

key and the list of values associated with that key and emits a 

new value based on the input.  

 

The reduce output is passed to the output writer. The 

MapReduce library includes a collection of Output classes 

that implement writers for common types of output targets.  

 

2.5 Sharding: Parallel Processing 

 

Sharding divides the input of a stage into multiple data sets 

(shards) that are processed in parallel. This can significantly 

improve the time it takes to run a stage. When running a 

MapReduce job, all the shards in a stage must finish before 

the next stage can run. When a map stage runs, each shard is 

handled by a separate instance of the Mapper class, with its 

own input reader. Similarly, for a reduce stage, each shard is 

handled by a separate instance of the Reducer class with its 

own output writer. The shuffle stage also shards its input, but 

without using any user-specified classes. 

 

The number of shards used in each stage can be different. 

The implementation of the input and output classes 

determines the number of map and reduce shards 

respectively. The diagram below shows the map stage 

handling its input in three shards, and the reduce stage using 

two shards. 

 
 

2.6 Slicing: Distributed Scheduling and Fault Tolerance 

 

The data in a shard is processed sequentially. The job 

executes a consecutive series of tasks using an App Engine 

task queue, one task at a time per shard. When a task runs, it 

reads data from the associated shard and calls the appropriate 

function (map, shuffle, or reduce) as many times as possible 

in a configurable time interval.  

 

The data processed in a task is called a slice. The amount of 

data consumed in a slice can vary, depending on how quickly 

the function processes its input. When a slice is completed, 

another task is enqueued for the next slice on the shard. The 

process repeats until all data in the shard has been processed. 

The diagram below shows a task in the map stage consuming 

a slice of a shard with repeated read/map calls: 

 
The tasks for all shards are placed in a single task queue. 

App Engine dynamically determines how many instances of 

a module to spin up in order to handle the task load. The 

number of instances may change while a stage is running. 

The diagram below shows a moment in time during the map 

stage when only two instances of the module running the 

Map are handling the three current tasks (t1, t2, t3) 

associated with the shards. 

 

 
 

The use of task queues, along with dynamic instance scaling, 

helps to distribute the workload efficiently and transparently. 

Dividing execution into slices also offers a level of fault 
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tolerance. Without slicing, if an error occurs while 

processing a shard, that entire shard would need to be re-run. 

With execution broken into slices, it is possible to detect the 

failure of a slice and attempt to re-run the slice a number of 

times before declaring a complete failure of the shard, 

possibly starting the shard again, or failing the entire job. 

 

3. Proposed Architecture 
 

 
 

 
 

The advertise dataset Is taken in to consideration in order to 

effectively apply the mining and clustering technique to 

classify the advertisements to different categories based on 

several factors like click rate, cost of advertising etc.  

 

The main work towards the step of Algorithm is: Firstly, the 

samples from the original dataset is selected. Then, the 

samples will be the training set for growing K trees 

accordingly to achieve the K classification results . Before 

that, the classification is relied on a mathematical calculation 

which is depending on the other parameters of the dataset. 

 

The final classification of datasets is done on as CPC, CPA, 

CTR, Cost of Advertisement. 

 

4. Modules 
 

4.1. Login – Authentication 

 

Authentication is used to make the application much secured 

and allow only the authorized person to use the application. 

Google Datastores is used to store the user information, and 

the same is applied during the authentication process.  

 

 

 

4.2. Split data into Subset 

 

This process is technically done by using map reduce 

algorithm. The Mapper is used for splitting as the data set is 

huge in quantity. For Splitting, Map Reduce uses the concept 

called InputSplit. InputSplit represents the data to be 

processed by an Individual Mapper. 

 

4.3. Data Parallel Processing (Mapper) 

 

In this module, we implement or configure the map reduce 

job for dividing the input data in to different clusters and 

share it among multiple nodes and process in parallel.  

 

4.4. Combine Intermediate Result (Reducer) 

 

In this module, we combine the intermediate results from all 

individual map reduce job, that we allocated on the previous 

module. After combing, the negotiation of K value for 

feature subset selection is processed.  

 

4.5. Collect AD Impressions Datasets  

 

 Cost-per click is important because it is the number that is    

going to determine the financial success of your paid 

search advertising campaign. 

 CPA advertising tracks the person clicking on an ad and 

determines if that person then also creates a desired   

transaction on the destination site.  

 

4.6. Classification process (using Map Reduce) 

 

• The advent of revolution in technology and internet has 

caused increase in marketing platform for advertising 

companies.  

• The classification is done in order to categorize the 

advertisements based on different factors that includes, 

CPA, CPC. Etc. 

• There are various models for determining the cost of 

advertising. They are Cost per Impressions (CPM), Cost 

per Click (CPC) and Cost per Action (CPA). 
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• CPM denotes Cost per 1000 Impressions (frequency of the 

ad display).  If the advertisement is shown 2000 times the 

cost will be equal to 2 CPM price. 

 

5. Conclusion 
 

OCCT, a one-class decision tree approach for performing 

one-to-many and many-to-many data linkage using 

MapReduce is presented in the paper. The proposed method 

is based on a one-class decision tree model that encapsulates 

the knowledge of which records should be linked to each 

other. Implementation using MapReduce will reduce the 

execution time of many-to-many data linkage. It enhances 

parallelism as linkage is executed in a distributed 

environment. The proposed method will be very efficient for 

large datasets.  

 

References 
 

[1] Ma’ayan Dror, Asaf Shabtai, Lior Rokach, Yuval 

Elovici “OCCT: A One-Class Clustering Tree for 

Implementing One-to-Many Data Linkage”, IEEE 

transactions on Knowledge and Data engineering, Vol. 

26, No. 3, March 2014 

[2] C. Li, Y. Zhang, and X. Li, “OcVFDT: One-Class Very 

Fast Decision Tree for One-Class Classification of Data 

Streams,” Proc. Third Int’l Workshop Knowledge 

Discovery from Sensor Data, pp. 79- 86, 2009. 

[3] Anne-Laure Boulesteix,  Silke Janitza J ochen Kruppa,  

Inke R. K¨onig “Overview of Random Forest 

Methodology and Practical Guidance with Emphasis on 

Computational Biology and Bioinformatics ”  pre-

review version of a manuscript accepted for publication 

in WIREs Data Mining & Knowledge Discovery , July 

25th 2012  

[4] Chen, W Y; et al. (2011). “Parallel Spectral Clustering 

in Distributed Systems”. IEEE Trans. Pattern Anal. 

Mach. Intell., 568-586. 

[5]  Jiawei Hanl, Yanheng Liul, Xin Sunl “A Scalable 

Random Forest Algorithm Based on MapReduce” 

presented at the IEEE Summer Power Meeting , 2013 

IEEE 

[6]  Aditya B. Patel, Manashvi Birla, Ushma Nair 

“Addressing Big Data Problem Using Hadoop and Map 

Reduce” presented at NIRMA university international 

conference on engineering  NUiCONE-2012, 06-

08December, 2012. 

[7]  Jyoti Nandimath , Ankur Patil, Ekata Banerjee, Pratima 

Kakade “Big Data Analysis Using Apache Hadoop” 

presented at IEEE IRI 2013, August 14-16, 2013, San 

Francisco, California, USA 

[8]  J. Dean and S. Ghemawat, "MapReduce: simplified data 

processingon large clusters," Commun. ACM, vol. 51, 

no. I, pp. 107-113, 2008. 

[9]  Apache Software Foundation. Official apache hadoop 

website, http://hadoop.apache.org/, Aug, 2012.  

[10] O'Reilly; Third edition, Tom White. Hadoop: A 

definitive guide.2012 

Paper ID: SUB152598 2136




