
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

One Class Clustering Tree for Implementing Many

to Many Data Linkage

Ravi R
1
, Michael G

2

1PG Scholar, Department of Computer Science and Engineering, Bharath University, Selaiyur, Chennai - 600 073, India

 2Assistant Professor, Department of Computer Science and Engineering, Bharath University, Selaiyur, Chennai - 600 073, India

Abstract: One-to-many and many-to-many data linkage are important in data mining. In earlier works data linkage is performed

among entities of the same type. To link between matching entities of different types in larger datasets a new one-to-many and many to

many data linkage method with MapReduce is proposed that links between entities of same and different natures. The proposed method

is based on a one-class clustering tree (OCCT) that characterizes the entities that should be linked together. With development of the

information technology, the scale of data is increasing quickly. The massive data poses a great challenge for data processing and

classification. In order to classify the data, there were several algorithm proposed to efficiently cluster the data. This project deals with

scalable random forest algorithm for classifying the advertisement benchmark datasets.

Keywords: Data mining, Hadoop, MapReduce, Clustering Tree

1. Introduction

Data linkage is one of the important task in data mining. It is

of two kinds: one-to –one, one-to-many and many to many.

One-to-one data linkage associates one entity with a

matching entity in another data set. One-to-many data

linkage associates an entity with a group of matching entities

from another data set. Many-to-many data linkage associates

group of entities from one data set with group of matching

entities from another data set. In this paper many-to-many

data linkage is implemented with MapReduce framework.

The massive data poses a great challenge for data processing

and classification. In order to classify the data, there were

several algorithm proposed to efficiently cluster the data.

One among that is the random forest algorithm, which is

used for the feature subset selection. The feature selection

involves identifying a subset of the most useful features that

produces compatible results as the original entire set of

features. It is achieved by classifying the given data. The

efficiency is calculated based on the time required to find a

subset of features, the effectiveness is related to the quality

of the subset of features. The existing system deals with fast

clustering based feature selection algorithm, which is proven

to be powerful, but when the size of the dataset increases

rapidly, the current algorithm is found to be less efficient as

the clustering of datasets takes quiet more number of time.

Hence the new method of implementation is proposed in this

project to efficiently cluster the data and persist on the back-

end database accordingly to reduce the time. It is achieved

by scalable random forest algorithm. The Scalable random

forest is implemented using Map Reduce Programming (An

implementation of Big Data) to efficiently cluster the data.

It works on two phases, the first step deals with the gathering

the datasets and persisting on the datastore and the second

step deals with the clustering and classification of data. This

process is completely implemented using Google App

Engine’s hadoop platform, which is a widely used open-

source implementation of Google's distributed file system

using MapReduce framework for scalable distributed

computing or cloud computing. Hadoop MapReduce is a

software framework for distributed processing of large data

sets. It is a sub-project of the Apache Hadoop project. The

framework takes care of scheduling tasks, monitoring them

and re-executing failed tasks. The primary objective of

MapReduce is to split the input data set into independent

chunks that are processed in a completely parallel manner.

The Hadoop MapReduce framework sorts the outputs of the

maps, which are then input to the reduce tasks. Both the

input and the output of the job are stored in a file system.

The proposed method with MapReduce links between the

entities using a One-Class Clustering Tree. A clustering tree

is a tree contains a cluster in each of the leaves instead of a

single classification. Each cluster is generalized by a set of

rules that is stored in the appropriate leaf. One-class

clustering tree is implemented with the help of MapReduce

in parallel. Clustering tree assigns each linkage task to

mapper class. Master node in the mapper assigns the work to

slaves. Slaves in turn completes the work and returns the

result to master node. The reducer class combines the

intermediate results from mapper class to provide a complete

clustering tree. As clustering tree is implemented in a parallel

and distributed environment it reduces the execution time.

The objectives of the paper is threefold:

1) To implement one-to-many and many–to-many data

linkage

2) To make data linkage for larger datasets more efficient

3) To execute data linkage in a parallel and distributed

environment using MapReduce.

2. Related Work

2.1 Record linkage using Map Reduce

A MapReduce job has three stages: map, shuffle, and reduce.

Each stage in the sequence must complete before the next

one can run. Intermediate data is stored temporarily between

the stages.

Paper ID: SUB152598 2133

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The data flow for a MapReduce job looks like this:

2.2 Map

The MapReduce library includes a Mapper class that

performs the map stage. The map stage uses an input reader

that delivers data one record at a time. The library also

contains a collection of Input classes that implement readers

for common types of data. You can also create your own

reader, if needed.

The map stage uses a map() function that you must

implement. When the map stage runs, it repeatedly calls the

reader to get one input record at a time and applies the map()

function to the record.

The implementation of the map() function depends on the

kind of job you are running. When used in a Map job, the

map () function emits output values. When used in a map

reduce job, the map() function emits key-value pairs for the

shuffle stage. When emitting pairs for a MapReduce job, the

keys do not have to be unique. The same key can appear in

many pairs.

2.3 Shuffle

The shuffle stage first groups all the pairs with the same key

together and then outputs a single list of values for each key:

If the same key-value pair occurs more than once, the

associated value will appear multiple times in the shuffle

output for that key. Also note that the list of values is not

sorted. The shuffle stage uses a Google Cloud Storage

bucket, either the default bucket or one that you can specify

in your setup code.

2.4 Reduce

The MapReduce library includes a Reducer class that

performs the reduce stage. The reduce stage uses a reduce()

function that you must implement. When this stage executes,

the reduce() function is called for each unique key in the

shuffled intermediate data set. The reduce function takes a

key and the list of values associated with that key and emits a

new value based on the input.

The reduce output is passed to the output writer. The

MapReduce library includes a collection of Output classes

that implement writers for common types of output targets.

2.5 Sharding: Parallel Processing

Sharding divides the input of a stage into multiple data sets

(shards) that are processed in parallel. This can significantly

improve the time it takes to run a stage. When running a

MapReduce job, all the shards in a stage must finish before

the next stage can run. When a map stage runs, each shard is

handled by a separate instance of the Mapper class, with its

own input reader. Similarly, for a reduce stage, each shard is

handled by a separate instance of the Reducer class with its

own output writer. The shuffle stage also shards its input, but

without using any user-specified classes.

The number of shards used in each stage can be different.

The implementation of the input and output classes

determines the number of map and reduce shards

respectively. The diagram below shows the map stage

handling its input in three shards, and the reduce stage using

two shards.

2.6 Slicing: Distributed Scheduling and Fault Tolerance

The data in a shard is processed sequentially. The job

executes a consecutive series of tasks using an App Engine

task queue, one task at a time per shard. When a task runs, it

reads data from the associated shard and calls the appropriate

function (map, shuffle, or reduce) as many times as possible

in a configurable time interval.

The data processed in a task is called a slice. The amount of

data consumed in a slice can vary, depending on how quickly

the function processes its input. When a slice is completed,

another task is enqueued for the next slice on the shard. The

process repeats until all data in the shard has been processed.

The diagram below shows a task in the map stage consuming

a slice of a shard with repeated read/map calls:

The tasks for all shards are placed in a single task queue.

App Engine dynamically determines how many instances of

a module to spin up in order to handle the task load. The

number of instances may change while a stage is running.

The diagram below shows a moment in time during the map

stage when only two instances of the module running the

Map are handling the three current tasks (t1, t2, t3)

associated with the shards.

The use of task queues, along with dynamic instance scaling,

helps to distribute the workload efficiently and transparently.

Dividing execution into slices also offers a level of fault

Paper ID: SUB152598 2134

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

tolerance. Without slicing, if an error occurs while

processing a shard, that entire shard would need to be re-run.

With execution broken into slices, it is possible to detect the

failure of a slice and attempt to re-run the slice a number of

times before declaring a complete failure of the shard,

possibly starting the shard again, or failing the entire job.

3. Proposed Architecture

The advertise dataset Is taken in to consideration in order to

effectively apply the mining and clustering technique to

classify the advertisements to different categories based on

several factors like click rate, cost of advertising etc.

The main work towards the step of Algorithm is: Firstly, the

samples from the original dataset is selected. Then, the

samples will be the training set for growing K trees

accordingly to achieve the K classification results . Before

that, the classification is relied on a mathematical calculation

which is depending on the other parameters of the dataset.

The final classification of datasets is done on as CPC, CPA,

CTR, Cost of Advertisement.

4. Modules

4.1. Login – Authentication

Authentication is used to make the application much secured

and allow only the authorized person to use the application.

Google Datastores is used to store the user information, and

the same is applied during the authentication process.

4.2. Split data into Subset

This process is technically done by using map reduce

algorithm. The Mapper is used for splitting as the data set is

huge in quantity. For Splitting, Map Reduce uses the concept

called InputSplit. InputSplit represents the data to be

processed by an Individual Mapper.

4.3. Data Parallel Processing (Mapper)

In this module, we implement or configure the map reduce

job for dividing the input data in to different clusters and

share it among multiple nodes and process in parallel.

4.4. Combine Intermediate Result (Reducer)

In this module, we combine the intermediate results from all

individual map reduce job, that we allocated on the previous

module. After combing, the negotiation of K value for

feature subset selection is processed.

4.5. Collect AD Impressions Datasets

 Cost-per click is important because it is the number that is

going to determine the financial success of your paid

search advertising campaign.

 CPA advertising tracks the person clicking on an ad and

determines if that person then also creates a desired

transaction on the destination site.

4.6. Classification process (using Map Reduce)

• The advent of revolution in technology and internet has

caused increase in marketing platform for advertising

companies.

• The classification is done in order to categorize the

advertisements based on different factors that includes,

CPA, CPC. Etc.

• There are various models for determining the cost of

advertising. They are Cost per Impressions (CPM), Cost

per Click (CPC) and Cost per Action (CPA).

Paper ID: SUB152598 2135

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

• CPM denotes Cost per 1000 Impressions (frequency of the

ad display). If the advertisement is shown 2000 times the

cost will be equal to 2 CPM price.

5. Conclusion

OCCT, a one-class decision tree approach for performing

one-to-many and many-to-many data linkage using

MapReduce is presented in the paper. The proposed method

is based on a one-class decision tree model that encapsulates

the knowledge of which records should be linked to each

other. Implementation using MapReduce will reduce the

execution time of many-to-many data linkage. It enhances

parallelism as linkage is executed in a distributed

environment. The proposed method will be very efficient for

large datasets.

References

[1] Ma’ayan Dror, Asaf Shabtai, Lior Rokach, Yuval

Elovici “OCCT: A One-Class Clustering Tree for

Implementing One-to-Many Data Linkage”, IEEE

transactions on Knowledge and Data engineering, Vol.

26, No. 3, March 2014

[2] C. Li, Y. Zhang, and X. Li, “OcVFDT: One-Class Very

Fast Decision Tree for One-Class Classification of Data

Streams,” Proc. Third Int’l Workshop Knowledge

Discovery from Sensor Data, pp. 79- 86, 2009.

[3] Anne-Laure Boulesteix, Silke Janitza J ochen Kruppa,

Inke R. K¨onig “Overview of Random Forest

Methodology and Practical Guidance with Emphasis on

Computational Biology and Bioinformatics ” pre-

review version of a manuscript accepted for publication

in WIREs Data Mining & Knowledge Discovery , July

25th 2012

[4] Chen, W Y; et al. (2011). “Parallel Spectral Clustering

in Distributed Systems”. IEEE Trans. Pattern Anal.

Mach. Intell., 568-586.

[5] Jiawei Hanl, Yanheng Liul, Xin Sunl “A Scalable

Random Forest Algorithm Based on MapReduce”

presented at the IEEE Summer Power Meeting , 2013

IEEE

[6] Aditya B. Patel, Manashvi Birla, Ushma Nair

“Addressing Big Data Problem Using Hadoop and Map

Reduce” presented at NIRMA university international

conference on engineering NUiCONE-2012, 06-

08December, 2012.

[7] Jyoti Nandimath , Ankur Patil, Ekata Banerjee, Pratima

Kakade “Big Data Analysis Using Apache Hadoop”

presented at IEEE IRI 2013, August 14-16, 2013, San

Francisco, California, USA

[8] J. Dean and S. Ghemawat, "MapReduce: simplified data

processingon large clusters," Commun. ACM, vol. 51,

no. I, pp. 107-113, 2008.

[9] Apache Software Foundation. Official apache hadoop

website, http://hadoop.apache.org/, Aug, 2012.

[10] O'Reilly; Third edition, Tom White. Hadoop: A

definitive guide.2012

Paper ID: SUB152598 2136

