
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Review Paper on Online Shortest Path Computation

Pratik P.Watane
1
, Prof. Prachi V. Kale

2

1ME (CSE) Scholar, Department of CSE, P R Patil College of Engg. & Tech., Amravati-444602, India

2AssitantantProfessor, Department of CSE, P R Patil College of Engg. & Tech., Amravati-444602, India

Abstract: The online shortest path problem aims at computing the shortest path based on live traffic circumstances. The problem of

point-to-point fastest path computation in static spatial networks is extensively studied with many pre computation techniques proposed

to speed up the computation. Most of the existing approaches make the simplifying assumption that travel times of the network edges are

constant. However, the real world spatial networks the edge travel times are time dependent on the arrival time to an edge determines the

actual travel time on the edge. we have study online computation of fastest path in time-dependent spatial networks and present a

technique which speeds-up the path computation. We show that our fastest path computation based on a bidirectional time-dependent A*

search significantly improves the computation time and storage capacity. With extensive experiments using real data-sets (including a

variety of large spatial networks with real traffic data) we demonstrate the efficacy of our proposed techniques for online fastest path

computation.

Keywords: Shortest path, time dependent spatial network, fastest path computation

1. Introduction

Shortest path computation is an important function in

modern car navigation systems. The always growing

popularity of online map applications and their wide

deployment in mobile devices and car navigation systems,

increase number of client search for point to point fastest

paths and the corresponding travel times. On static road

networks where edge costs are constant, this problem has

been extensively studied and many efficient speedup

techniques have been developed to compute the fastest

path in a matter of milliseconds [1, 2, 3,4]. The static

fastest path approaches make the simplify assumption that

the travel time for each edge of the road network is

constant. However, in real world the actual travel time on a

road segment heavily depends on the traffic congestion

and, therefore, there is a function of time i.e., time

dependent. For example, Figure 1 shows the variation of

travel time for a Particular road segment of I-10 freeway in

Los Angeles as a function of arrival-time to the segment.

As shown, the travel-time changes with time and the

change in travel-time is significant. For instance, from

8AM to 9AM the travel-time of the segment changes from

32 minutes to 18 minutes. By induction, one can observe

that the time dependent edge travel times yield a

considerable change in the actual fastest path between any

pair of nodes throughout the day. Specifically, the fastest

between a source and a destination node varies depending

on the departure time from the source. Unfortunately, all

those techniques that assume constant edge weights fail to

address the fastest path computation in real world time

dependent spatial networks. The time dependent fastest

path problem was first shown by Dreyfus [5] to be

solvable super-polynomial in FIFO networks by a trivial

modification to Dijkstra algorithm where, analogous to

shortest path distances, the arrival time to the nodes is used

as the labels that form the basis of the greedy algorithm.

The FIFO property which typically holds for many

networks including road networks, suggests that moving

objects exit from an edge in the same order they entered

the edge1.

Figure 1

However, the modified Dijkstra algorithm [5] is far too

slow for online map applications which are usually

deployed on very large networks and require almost instant

response times. On the other side, there are many efficient

pre computation approaches that answer fastest path

queries in near real time (e.g., [1]) in static road networks.

However, it is infeasible to extend these approaches to

time dependent networks. This is because the input size

(i.e., the number of fastest paths) increases drastically in

time dependent networks. Specifically, since the length of

as-d path changes depending on the departure time from s,

the fastest path is not unique for any pair of nodes in time

dependent networks. It has been conjectured in [6] and

settled in [7] that the number of fastest paths between any

pair of nodes in time dependent road networks can be

super-polynomial. Hence, an algorithm which considers

the every possible path (corresponding to every possible

departure-time from the source) for any pair of nodes in

large time-dependent networks would suffer from

exponential time and prohibitively large storage

requirements. For example, the time dependent extension

of Contraction Hierarchies (CH) [8] and SHARC [9]

speed-up techniques suffer from the impractical

precomputation times and intolerable storage complexity.

2. Related Work

In the last decade, numerous efficient fastest path

algorithms with pre computation methods have been

proposed. However, there are limited numbers of studies

that focus on efficient computation of time dependent

Paper ID: SUB152522 1782

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

fastest path (TDFP) problem. Cooke and Halsey [10] first

studied TDFP computation where they solved the problem

using Dynamic Programming in discrete time. Another

discrete time solution to TDFP problem is to use time

expanded networks [11]. The time expanded network

(TEN) and discrete time approaches assume that the edge

weight functions are defined over a finite discrete window

of time t ∈t0, t1, .., tn, where tnis determined by the total

duration of time interval under the consideration.

Therefore, the problem is reduced to the problem of

computing minimum weight paths over a static network

per time window. Hence, we can apply any static fastest

path algorithms to compute TDFP. Although these

algorithms are easy to design and implement, they have

numerous shortcomings. First, TEN models create a

separate instance of network for each time instance hence

yielding a substantial amount of storage overhead. Second,

such approaches can only provide approximate results

because the model misses the state of the network between

any two discrete time instants. Moreover, the difference

between the shortest path obtained using TEN approaches

and the optimal shortest path is unbounded. This is

because the query time can be always between any two of

the intervals which are not captured by the model, and

hence the error is accumulated on eac edge along the path.

In [12], George and Shekhar proposed a time aggregated

graph approach where they aggregate the travel times of

each edge over the time instants into a time series.

Their model requires less space than that of the TEN and

the results are still approximate with no bounds. In [5],

Dreyfus showed that TDFP problem can be solved by a

generalization of Dijkstra’s method as efficiently as for

static fastest path problems. However, Halpern [13] proved

that the generalization of Dijkstra’s algorithm is only true

for FIFO networks. If the FIFO property does not hold in a

time dependent network, then the problem is NP-Hard. In

[14], Orda and Rom introduced Bellman-Ford based

algorithm where they determine the path toward

destination by refining the arrival time functions on each

node in the whole time interval T. In [15], Kanoulas et al.

proposed Time Interval All Fastest Path (allFP) approach

in which they maintain a priority queue of all paths to be

expanded instead of sorting the priority queue by scalar

values.

 They enumerate all the paths from source to a destination

node which incurs exponential running time in the worst

case. In [16], Ding et al. used a variation of Dijkstra’s

algorithm to solve the TDFP problem. With their TDFP

algorithm, using Dijkstra like expansion, they decouple the

path selection and time refinement (computing earliest

arrival-time functions for nodes) for a given starting time

interval T. Their algorithm is also shown to run in

exponential time for special cases [17]. The focus of both

[15] and [16] is to find the fastest path in time dependent

road networks for a given start time interval. The ALT

algorithm [18] was originally proposed to accelerate

fastest path computation in static road networks. With

ALT, a set of nodes called landmarks are chosen and then

the shortest distances between all the nodes in the network

and all the landmarks are computed and stored. ALT

employs triangle inequality based on distances to the

landmarks to obtain a heuristic function to be used in A*

search. The time dependent variant of this technique is

studied in [19] (unidirectional) and [20] (bidirectional A*

search) where heuristic function is computed w.r.t lower-

bound graph. However, the landmark selection is very

difficult and the size of the search space is severely

affected by the choice of landmarks. So far no optimal

strategy with respect to landmark selection and random

queries has been found. Specifically, landmark selection is

NP-hard [21] and ALT does not guarantee to yield the

smallest search spaces with respect to fastest path

computations where source and destination nodes are

chosen at random. Our experiments with real world time

dependent travel-times show that our approach consumes

much less storage as compared to ALT based approaches

and yields faster response times.

In two different studies, The Contraction Hierarchies (CH)

and SHARC methods (also developed for static networks)

were augmented to time-dependent road networks in [8]

and [9], respectively. The main idea of these techniques is

to remove unimportant nodes from the graph without

changing the fastest path distances between the remaining

(more important) nodes. However, unlike the static

networks, the importance of a node can change throughout

the time under consideration in time dependent networks,

hence the importance of the nodes are time varying.

Considering the super-polynomial input size, and hence

the super-polynomial number of important nodes with

time-dependent networks, the main shortcomings of these

approaches are impractical pre-processing times and

extensive space consumption. For example, the

precomputation time for SHARC in time dependent road

networks takes more than 11 hours for relatively small

road networks (e.g. LA with 304,162 nodes) [9].

Moreover, due to the significant use of arc flags [9],

SHARC does not work in a dynamic scenario: whenever

an edge cost function changes, arc flags should be

recomputed, even though the graph partition need not be

updated. While CH also suffers from slow pre-processing

times, the space consumption for CH is at least 1000 bytes

per node for less varied edge-weights where the storage

cost increases with real-world time-dependent edge

weights. Therefore, it may not be feasible to apply

SHARC and CH to continental size road networks which

can consist of more than 45 million road segments (e.g.,

North America road network) with possibly large varied

edge weights.

3. Time Dependent Path Planning

We explain the difference between fastest computation in

time dependent and static spatial networks. We also

discuss the importance and the feasibility of time

dependent route planning. To illustrate why classic fastest

path computations in static road networks may return non-

optimal results, we show a simple example in Figure 2

where a spatial network is modelled as a time dependent

graph and edge travel times are function of time. Consider

the snapshot of the network with edge weights

corresponding to travel-time values at t=0. With classic

fastest path computation approaches that disregard time

dependent edge travel-times, the fastest path from s to d

Paper ID: SUB152522 1783

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

goes through v1, v2, v4 with a cost of 13 time units.

However, by the time when v2is reached (i.e., at t=5), the

cost of edge e(v2, v4) changes from 8 to 12 time units, and

hence reaching d through v2 takes 17 time units instead of

13 as it was anticipated at t=0. In contrast, if the time-

dependency of edge travel times are considered and hence

the path going through v3 was taken, the total travel cost

would have been 15 units which is the actual optimal

fastest path. We call this shortcoming of the classic fastest

path computation techniques as no look ahead problem.

Unfortunately, most of the existing state of the art path

planning applications suffers from the no look ahead

shortcoming and, hence, their fastest path recommendation

remains the same throughout the day regardless of the

departure time from the source. Although some of these

applications provide alternative paths under traffic

conditions (which may seem similar to time dependent

planning at first), we observe that the recommended

alternative paths and their corresponding travel times still

remain unique during the day, and hence no time

dependent planning. To the best of knowledge, these

applications compute top-k fastest paths (i.e., k alternative

paths) and their corresponding travel times with and

without taking into account the traffic conditions. The

travel times which take into account the traffic conditions

are simply computed by considering increased edge

weights (that corresponds to traffic congestion) for each

path. However, our time dependent path planning results in

different optimum paths for different departure times from

the source. For example, consider Figure 3(a) where

Google Maps offer two alternative paths (and their travel

times under no-traffic and traffic conditions) for an origin

and destination pair in Los Angeles road network. Note

that the path recommendation and the travel times remain

the same regardless of when the user submits the query.

On the other hand, Figure 3(b) depicts the time dependent

path recommendations (in different colours for different

departure times) for the same origin and destination pair

where we computed the time-dependent fastest paths for

38 consecutive departure times between 8AM and

5:30PM, spaced 15 minutes apart2. As shown, the optimal

paths change frequently during the course of the day.

Figure 2: Time-dependent graph

One may argue against the feasibility of time dependent

path planning algorithms due to a unavailability of the

time-dependent edge travel-times, or b) negligible gain of

time dependent path planning (i.e., how much time-

dependent planning can improve the travel-time) over

static path planning. To address the first argument, note

that recent advances in sensor networks enabled

instrumentation of road networks in major cities for

collecting real time traffic data, and hence it is now

feasible to accurately model the time dependent travel

times based on the vast amounts of historical data. For

instance, at our research centre. Meanwhile, we also

witness that the leading navigation service providers

started releasing their time dependent travel time data for

road networks at high temporal resolution. With regards to

the second argument, several recent studies showed the

importance of time dependent path planning in road

networks where real-world traffic datasets have been used

for the assessment. For example, in [23] we report that the

fastest path computation that considers time-dependent

edge travel-times in Los Angeles road network decreases

the travel-time by as much as 68% over the fastest path

computation that assumes constant edge travel-times. We

made the similar observation in another study [24] under

IBM’s Smart Traffic Project where the time-dependent

fastest path computation in Stockholm road network can

improve the travel time accuracy up to 62%. Considering

the availability of high resolution time dependent travel

time data for road networks, and the importance of time

dependency for accurate and useful path planning, the need

for efficient algorithms to enable next-generation time

dependent path planning applications becomes apparent

and immediate.

(a) Static path planning

(b) Time-dependent path planning

Figure 3: Static vs. Time-dependent path planning

Paper ID: SUB152522 1784

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

4. Proposed Work

We propose a bidirectional time dependent fastest path

algorithm (BTDFP)based on A* search [25]. There are two

main challenges to employ bidirectional A* search in time

dependent networks. First, finding an admissible heuristic

function (i.e., lower bound distance) between an

intermediate vi node and the destination d is challenging as

the distance between viand d changes based on the

departure time from vi. Second, it is not possible to

implement a backward search without knowing the arrival

time at the destination. We address the former challenge

by partitioning the road network to non-overlapping

partitions (an off-line operation) and precompute the intra

(node-to-border) and inter (border-to-border) partition

distance labels with respect to Lower-bound Graph G

which is generated by substituting the edge travel times in

Gwith minimum possible travel-times. We use the

combination of intra and inter distance labels as a heuristic

function in the online computation. To address the latter

challenge, we run the backward search on the lower-bound

graph (G) which enables us to filter-in the set of the nodes

that needs to be explored by the forward search.

We explain our bidirectional time dependent fastest path

approach that we generalize bidirectional A* algorithm

proposed for static spatial networks [26] to time dependent

road networks. Our proposed solution involves two phases.

At the precomputation phase, we partition the road

network into non-overlapping partitions and precompute

lower-bound distance labels within and across the

partitions with respect to G(V,E). Successively, at the

online phase, we use the pre computed distance labels as a

heuristic function in our bidirectional time dependent A*

search that performs simultaneous searches from source

and destination. As showed in [5], the time dependent

fastest path problem can be solved by modifying Dijkstra

algorithm. We refer to modified Dijkstra algorithm as time

dependent Dijkstra (TD-Dijkstra). TD-Dijkstra visits all

network nodes reachable from s in every direction until

destination node d is reached. On the other side, a time

dependent A* algorithm can significantly reduce the

number of nodes that have to be traversed in TD-Dijkstra

algorithm by employing a heuristic function h(v) that

directs the search towards destination. To guarantee

optimal results, h(v) must be admissible and consistent

(a.k.a, monotonic). The admissibility implies that h(v)

must be less than or equal to the actual distance between v

and d. With static road networks where the length of an

edge is constant, Euclidian distance between v and d is

used as h(v). However, this simple heuristic function

cannot be directly applied to time-dependent road

networks, because, the optimal travel-time between v and

d changes based on the departure-time tv from v.

Therefore, in time-dependent road networks, we need to

use an estimator that never overestimates the travel-time

between v and d for any possible tv. One simple lower-

bound estimator is deuc(v, d)/max(speed), i.e., the

Euclidean distance between v and d divided by the

maximum speed among the edges in the entire network.

Although this estimator is guaranteed to be a lower-bound,

it is a very loose bound, and hence yields insignificant

pruning. With our approach, we obtain a much tighter

bound by utilizing the pre computed distance labels.

Assuming that an online time dependent fastest path query

requests a path from source s in partition Si to destination

d in partition S. The fastest path must pass through from

one border node bi in Si and another border node bj in Sj.

We know that the time-dependent fastest path distance

passing from bi and bj is greater than or equal to the pre

computed lower-bound border-to-border (e.g., LTT (bl, bt))

distance for Si and Sj pair. We also know that a time-

dependent fastest path distance from s to bi is always

greater than or equal to the precomputed lower-bound

fastest path distance of s to its nearest border node bs.

Analogously, same is true from the border node bd(i.e.,

nearest border node) to din Sj. Thus, we can compute a

lower-bound estimator of s by h(s) = LTT (s, bs) + LTT (bl,

bt) + LTT (bd, d).

Lemma 1.Given an intermediate node vi in Si and

destination node d in Sj, the estimator h(vi) is admissible,

i.e., a lower bound of time-dependent fastest path distance

from vi to d passing from border nodes bi and bj in Si and

Sj ,respectively.

Proof.Assume LTT (bl, bt) is the minimum border-to-

border distance between Si and Sj, and b
’
I,b

’
j are the nearest

border nodes to vi and d in G, respectively. By definition

of G(V,E), LTT (vi, b
’
i) ≤ TDFP(vi, bi, tvi), LTT (bl, bt) ≤

TDFP(bi, bj, tbi), and LTT(b
’
j, d) ≤ TDFP(bj, d, tbj) Then,

we have h(vi) = LTT (vi, bi
’
)+LTT (bl, bt)+ LTT (b

’
j, d) ≤

TDFP(vi, bi, tvi) + TDFP(bi, bj, tbi) + TDFP(bj, d, tbj)

We can use our h (v) heuristic with unidirectional time-

dependent A* search in road networks. The time-

dependent A* algorithm is a best-first search algorithm

which scans nodes based on their time-dependent cost

label (maintained in a priority queue) to source similar to

[5]. The only difference to [5] is that the label within the

priority queue is not determined only by the time-

dependent distance to source but also by a lower-bound of

the distance to d, i.e., h(v) introduced above. To further

speed-up the computation, we propose a bidirectional

search that simultaneously searches forward from the

source and backwards from the destination until the search

frontiers meet. However, bidirectional search is

challenging in time-dependent road networks for two

following reasons. First, it is essential to start the

backward search from the arrival-time at the destination td

and exact td cannot be evaluated in advance at the query

time (recall that arrival-time to destination depends on the

departure time from the source in time-dependent road

networks). We address this problem by running a

backward A* search that is based on the reverse lower-

bound graph G (the lower-bound graph with every edge

reversed). The main idea with running backward search

inG is to determine the set of nodes that will be explored

by the forward A* search. Second, it is not straightforward

to satisfy the consistency (the second optimality condition

of A* search) of h(v) as the forward and reverse searches

use different distance functions. Next, we explain

bidirectional time-dependent A* search algorithm

(Algorithm 1) and how we satisfy the consistency. Given

G = (V, E, T), s and d, and departure-time ts from s, let Qf

and Qb represent the two priority queues that maintain the

Paper ID: SUB152522 1785

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

labels of nodes to be processed with forward and backward

A* search, respectively. Let F represent the set of nodes

scanned by the forward search and Nf is the corresponding

set of labelled vertices (those in its priority queue). We

denote the label of a node in Nf by dfv. Analogously, we

define B, Nb, and dfv for the backward search. Note that

during the bidirectional search F and B are disjoint but Nf

and Nb may intersect. We simultaneously run the forward

and backward A* searches on G(V, E, T) and G,

respectively (Line 4 in Algorithm 1). We keep all the

nodes visited by backward search in a set H (Line 5).

When the search frontiers meet, i.e., as soon as Nf and Nb

have a node u in common (Line 6), the cost of the time-

dependent fastest path (TDFP(s, u, ts)) from s to u is

determined.

Fig. 4.Bidirectional search

At this point, we know that TDFP (u, d, tu) > LTT(u, d) for

the path found by the backward search. Hence, the time-

dependent cost of the paths (found so far) passing from u

is the upper-bound of the time-dependent fastest path from

s to d, i.e., TDFP(s, u, ts)+ TDFP(u, d, tu) ≥ TDFP(s, d,

ts).If we stop the searches as soon as a node u is scanned

by both forward and backward searches, we cannot

guarantee finding the time-dependent fastest path from u to

d within the set of nodes in H. This is due to inconsistent

potential function used in bidirectional search that relies on

two independent potential functions for two inner A*

algorithms. Specifically, let hf(v) (estimated distance from

node v to target) and hb(v) (estimated distance from node v

to source) be the potential functions used in the forward

and backward searches, respectively. With the backward

search, each original edge e(i, j) considered as e(j, i) in the

reverse graph where hb used as the potential function, and

hence the reduced cost3 of e(j, i) w.r.t. hb is computed by

chb(j, i)=c(i, j)- hb(j)+hb(i) where c(i, j) is the cost in the

original graph. Note that hf and hb are consistent if, for all

edges (i, j), chf(i, j) in the original graph is equal to chb(j, i)

in the reverse graph. If hf and hb are not consistent, there is

no guarantee that the shortest path can be found when the

search frontiers meet. For instance, consider Figure 6

where the forward and backward searches meet at node u.

As shown, if v is scanned before u by the forward search,

then TDFP(s, u, ts) > TDFP(s, v, ts). Similarly if w is

scanned before u by the backward search, the LTT (u,

d)>LTT(w, d) and hence TDFP(u, d, tu) > TDFP(w, d, tw).

Consequently, it is possible that TDFP(s, u,ts) + TDFP(u,

d, tu) ≥ TDFP(s, v, ts) + TDFP(w, d, tw). To address this

challenge, one needs to find a) a consistent heuristic

function and stop the search when the forward and

backward searches meet or b) a new termination condition.

In this study, we develop a new termination condition (the

proof of correctness is given below) in which we continue

both searches until the Qb only contains nodes whose

labels exceed TDFP(s, u, ts) + TDFP(u, d, tu) by adding all

visited nodes to H (Line 9-11). Recall that the label

(denoted by dbv) of node v in the backward search priority

queue Qbis computed by the time-dependent distance from

the destination to v plus the lower-bound distance from v

to s, i.e., dbv= TDFP(v, d, tv) + h(v). Hence, we stop the

search when dbv> TDFP(s, u, ts) + TDFP(u, d, tu). As we

explained, TDFP(s, u, ts) + TDFP(u, d, tu) is the length of

the fastest path seen so far (not necessarily the actual

fastest path) and is updated during the search when a new

common node u_ found with TDFP(s, u_, ts)+TDFP(u_, d,

tu_) <TDFP(s, u, ts)+TDFP(u, d, tu). Once both searches

stop, H will include all the candidate nodes that can

possibly be part of the time-dependent fastest path to d.

Finally, we continue the forward search considering only

the nodes in H until we reach d (Line 12).

Algorithm 1.B-TDFP Algorithm

1. Input: GT,G, s:source, d:destination,ts:departure

time

2. Output: a (s, d, ts) fastest path

3. FS():forward search, BS():backward search,

Nf/Nb: nodes scanned by FS()/BS(),dbv:label of the

minimum element in BS queue

4. FS(GT) and BS(G) //start searches

simultaneously

5. Nf← FS(GT) and Nb← BS(G)

6. If Nf∩ Nb_= ∅then u ← Nf∩ Nb

7. M = TDFP(s, u, ts) + TDFP(u, d, tu)

8. end If

9. While dbv>M

10. Nb← BS(G)

11. EndWhile

12. FS(Nb)

13. return (s, d, ts)

Lemma 2.Algorithm 1 finds the correct time-dependent

fastest path from source to destination for a given

departure-time ts.

Proof. We prove Lemma 2 by contradiction. The forward

search in Algorithm 1 is the same as the unidirectional A*

algorithm and our heuristic function h(v) is a lower bound

of time-dependent distance from u to v. Therefore, the

forward search is correct. Now, let P(s, (u), d, ts) represent

the path from s to d passing from u where forward and

backward searches meet and ω denotes the cost of this

path. As we showed ω is the upper-bound of actual time-

dependent fastest path from s to d. Let φ be the smallest

label of the backward search in priority queue Qb when

both forward and backward searches stopped. Recall that

we stop searches when φ > ω. Suppose that Algorithm 1 is

not correct and yields a suboptimal path, i.e., the fastest

path passes from a node outside of the corridor generated

by the forward and backward searches. Let P∗ be the

fastest path from s to d for departure-time ts and cost of

this path is α. Let v be the first the backward search and

hb(v) is the heuristic function for the backward search.

Hence, we have φ ≤ hb(v) +LTT (v, d), α ≤ ω < φ and

hb(v)+ LTT (v, d) ≤ LTT (s, v)+ LTT (v, d) ≤ TDFP(s, v,

ts)+TDFP(v, t, tv) = α, which is a contradiction. Hence, the

fastest path will be found in the corridor of the nodes

labelled by the backward search.

Paper ID: SUB152522 1786

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

5. Conclusion and Future Work

We proposed a time dependent fastest path algorithm

based on bidirectional A*. Unlike the most path planning

studies, we assume the edge weights of the road network

are time varying rather than constant. Therefore, our

approach yield a much more realistic scenario, and hence,

applicable to the real world road networks. We also

compared our approaches with those handfuls of time

dependent fastest path studies. Our experiments with real-

world road network and traffic data showed that our

proposed approaches outperform the competitors in

storage and response time significantly. We intend to

pursue this study in two different directions. First, we plan

to investigate new data models for effective representation

of spatiotemporal road networks. This is critical in

supporting development of efficient and accurate time-

dependent algorithms, while minimizing the storage and

computation costs. Second, to support rapid changes of the

traffic patterns (that may happen in case of

accidents/events; for example), we intend to study

incremental update algorithms for both of our approaches.

References

[1] Samet, H., Sankaranarayanan, J., Alborzi, H.: Scalable

network distance browsing in spatial databases. In:

SIGMOD (2008)

[2] Sanders, P., Schultes, D.: Highway hierarchies hasten

exact shortest path queries. In: Brodal, G.S., Leonardi,

S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 568–579.

Springer, Heidelberg (2005).

[3] Sanders, P., Schultes, D.: Engineering fast route

planning algorithms. In: Demetrescu, C. (ed.) WEA

2007. LNCS, vol. 4525, pp. 23–36. Springer,

Heidelberg (2007)

[4] Wagner, D., Willhalm, T.: Geometric speed-up

techniques for finding shortest paths in large sparse

graphs. In: Di Battista, G., Zwick, U. (eds.) ESA

2003. LNCS, vol. 2832, pp. 776–787. Springer,

Heidelberg (2003)

[5] Dreyfus, S.E.: An appraisal of some shortest-path

algorithms. Operations Research 17(3) (1969).

[6] Dean, B.C.: Algorithms for min-cost paths in time-

dependent networks with wait policies. Networks

(2004)

[7] Foschini, L., Hershberger, J., Suri, S.: On the

complexity of time-dependent shortest paths. In:

SODA (2011)

[8] Batz, G.V., Delling, D., Sanders, P., Vetter, C.: Time-

dependent contraction hierarchies. In: ALENEX

(2009)

[9] Delling, D.: Time-dependent SHARC-routing. In:

Halperin, D., Mehlhorn, K. (eds.) Esa 2008. LNCS,

vol. 5193, pp. 332–343. Springer, Heidelberg (2008)

[10] Cooke, L., Halsey, E.: The shortest route through a

network with timedependent intermodal transit times.

Journal of Mathematical Analysis and Applications

(1966)

[11] Kohler, E., Langkau, K., Skutella, M.: Time-expanded

graphs for flow-dependent transit times. In: Proc. 10th

Annual European Symposium on Algorithms (2002)

[12] George, B., Kim, S., Shekhar, S.: Spatio-temporal

network databases and routing algorithms: A summary

of results. In: Papadias, D., Zhang, D., Kollios, G.

(eds.) SSTD 2007. LNCS, vol. 4605, pp. 460–477.

Springer, Heidelberg (2007)

[13] Halpern, J.: Shortest route with time dependent length

of edges and limited delay possibilities in nodes.

Mathematical Methods of Operations Research (1969)

[14] Orda, A., Rom, R.: Shortest-path and minimum-delay

algorithms in networks with time dependent edge-

length. J. ACM (1990)

[15] Kanoulas, E., Du, Y., Xia, T., Zhang, D.: Finding

fastest paths on a road network with speed patterns.

In: ICDE (2006)

[16] Ding, B., Yu, J.X., Qin, L.: Finding time-dependent

shortest paths over large graphs. In: EDBT (2008)

[17] Dehne, F., Omran, M.T., Sack, J.-R.: Shortest paths in

time-dependent fifo networks using edge load

forecasts. In: IWCTS (2009)

[18] Goldberg, A.V., Harellson, C.: Computing the shortest

path: A* search meets graph theory. In: SODA (2005)

[19] Delling, D., Wagner, D.: Landmark-based routing in

dynamic graphs. In: Demetrescu, C. (ed.) WEA 2007.

LNCS, vol. 4525, pp. 52–65. Springer, Heidelberg

(2007)

[20] Nannicini, G., Delling, D., Liberti, L., Schultes, D.:

Bidirectional a* search for time dependent fast paths.

In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol.

5038, pp. 334–346. Springer, Heidelberg (2008)

[21] Potamias, M., Bonchi, F., Castillo, C., Gionis, A.: Fast

shortest path distance estimation in large networks. In:

CIKM (2009)

[22] PeMS, https://pems.eecs.berkeley.edu (accessed in

May 2010)

[23] Demiryurek, U., Kashani, F.B., Shahabi, C.: A case

for time-dependent shortest path computation in

spatial networks. In: ACM SIGSPATIAL (2010)

[24] Guc, B., Ranganathan, A.: Real-time, scalable route

planning using stream-processing infrastructure. In:

ITS (2010)

[25] Hart, P., Nilsson, N., Raphael, B.: A formal basis for

the heuristic determination of minimum cost paths.

IEEE Transactions on Systems Science and

Cybernetics (1968)

[26] Pohl, I.: Bi-directional search. In: Machine

Intelligence. Edinburgh University Press, Edinburgh

(1971)

Paper ID: SUB152522 1787

