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Abstract: The online shortest path problem aims at computing the shortest path based on live traffic circumstances. The problem of 

point-to-point fastest path computation in static spatial networks is extensively studied with many pre computation techniques proposed 

to speed up the computation. Most of the existing approaches make the simplifying assumption that travel times of the network edges are 

constant. However, the real world spatial networks the edge travel times are time dependent on the arrival time to an edge determines the 

actual travel time on the edge. we have study online computation of fastest path in time-dependent spatial networks and present a 

technique which speeds-up the path computation. We show that our fastest path computation based on a bidirectional time-dependent A* 

search significantly improves the computation time and storage capacity. With extensive experiments using real data-sets (including a 

variety of large spatial networks with real traffic data) we demonstrate the efficacy of our proposed techniques for online fastest path 

computation. 
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1. Introduction  
 

Shortest path computation is an important function in 

modern car navigation systems. The always growing 

popularity of online map applications and their wide 

deployment in mobile devices and car navigation systems, 

increase number of client search for point to point fastest 

paths and the corresponding travel times. On static road 

networks where edge costs are constant, this problem has 

been extensively studied and many efficient speedup 

techniques have been developed to compute the fastest 

path in a matter of milliseconds [1, 2, 3,4]. The static 

fastest path approaches make the simplify assumption that 

the travel time for each edge of the road network is 

constant. However, in real world the actual travel time on a 

road segment heavily depends on the traffic congestion 

and, therefore, there is a function of time i.e., time 

dependent. For example, Figure 1 shows the variation of 

travel time for a Particular road segment of I-10 freeway in 

Los Angeles as a function of arrival-time to the segment. 

As shown, the travel-time changes with time and the 

change in travel-time is significant. For instance, from 

8AM to 9AM the travel-time of the segment changes from 

32 minutes to 18 minutes. By induction, one can observe 

that the time dependent edge travel times yield a 

considerable change in the actual fastest path between any 

pair of nodes throughout the day. Specifically, the fastest 

between a source and a destination node varies depending 

on the departure time from the source. Unfortunately, all 

those techniques that assume constant edge weights fail to 

address the fastest path computation in real world time 

dependent spatial networks. The time dependent fastest 

path problem was first shown by Dreyfus [5] to be 

solvable super-polynomial in FIFO networks by a trivial 

modification to Dijkstra algorithm where, analogous to 

shortest path distances, the arrival time to the nodes is used 

as the labels that form the basis of the greedy algorithm.  

 

The FIFO property which typically holds for many 

networks including road networks, suggests that moving 

objects exit from an edge in the same order they entered 

the edge1. 

 

 
Figure 1 

 

However, the modified Dijkstra algorithm [5] is far too 

slow for online map applications which are usually 

deployed on very large networks and require almost instant 

response times. On the other side, there are many efficient 

pre computation approaches that answer fastest path 

queries in near real time (e.g., [1]) in static road networks. 

However, it is infeasible to extend these approaches to 

time dependent networks. This is because the input size 

(i.e., the number of fastest paths) increases drastically in 

time dependent networks. Specifically, since the length of 

as-d path changes depending on the departure time from s, 

the fastest path is not unique for any pair of nodes in time 

dependent networks. It has been conjectured in [6] and 

settled in [7] that the number of fastest paths between any 

pair of nodes in time dependent road networks can be 

super-polynomial. Hence, an algorithm which considers 

the every possible path (corresponding to every possible 

departure-time from the source) for any pair of nodes in 

large time-dependent networks would suffer from 

exponential time and prohibitively large storage 

requirements. For example, the time dependent extension 

of Contraction Hierarchies (CH) [8] and SHARC [9] 

speed-up techniques suffer from the impractical 

precomputation times and intolerable storage complexity. 

 

2. Related Work 
 

In the last decade, numerous efficient fastest path 

algorithms with pre computation methods have been 

proposed. However, there are limited numbers of studies 

that focus on efficient computation of time dependent 
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fastest path (TDFP) problem. Cooke and Halsey [10] first 

studied TDFP computation where they solved the problem 

using Dynamic Programming in discrete time. Another 

discrete time solution to TDFP problem is to use time 

expanded networks [11]. The time expanded network 

(TEN) and discrete time approaches assume that the edge 

weight functions are defined over a finite discrete window 

of time t ∈t0, t1, .., tn, where tnis determined by the total 

duration of time interval under the consideration. 

Therefore, the problem is reduced to the problem of 

computing minimum weight paths over a static network 

per time window. Hence, we can apply any static fastest 

path algorithms to compute TDFP. Although these 

algorithms are easy to design and implement, they have 

numerous shortcomings. First, TEN models create a 

separate instance of network for each time instance hence 

yielding a substantial amount of storage overhead. Second, 

such approaches can only provide approximate results 

because the model misses the state of the network between 

any two discrete time instants. Moreover, the difference 

between the shortest path obtained using TEN approaches 

and the optimal shortest path is unbounded. This is 

because the query time can be always between any two of 

the intervals which are not captured by the model, and 

hence the error is accumulated on eac edge along the path. 

In [12], George and Shekhar proposed a time aggregated 

graph approach where they aggregate the travel times of 

each edge over the time instants into a time series.  

 

Their model requires less space than that of the TEN and 

the results are still approximate with no bounds. In [5], 

Dreyfus showed that TDFP problem can be solved by a 

generalization of Dijkstra’s method as efficiently as for 

static fastest path problems. However, Halpern [13] proved 

that the generalization of Dijkstra’s algorithm is only true 

for FIFO networks. If the FIFO property does not hold in a 

time dependent network, then the problem is NP-Hard. In 

[14], Orda and Rom introduced Bellman-Ford based 

algorithm where they determine the path toward 

destination by refining the arrival time functions on each 

node in the whole time interval T. In [15], Kanoulas et al. 

proposed Time Interval All Fastest Path (allFP) approach 

in which they maintain a priority queue of all paths to be 

expanded instead of sorting the priority queue by scalar 

values. 

 

 They enumerate all the paths from source to a destination 

node which incurs exponential running time in the worst 

case. In [16], Ding et al. used a variation of Dijkstra’s 

algorithm to solve the TDFP problem. With their TDFP 

algorithm, using Dijkstra like expansion, they decouple the 

path selection and time refinement (computing earliest 

arrival-time functions for nodes) for a given starting time 

interval T. Their algorithm is also shown to run in 

exponential time for special cases [17]. The focus of both 

[15] and [16] is to find the fastest path in time dependent 

road networks for a given start time interval. The ALT 

algorithm [18] was originally proposed to accelerate 

fastest path computation in static road networks. With 

ALT, a set of nodes called landmarks are chosen and then 

the shortest distances between all the nodes in the network 

and all the landmarks are computed and stored. ALT 

employs triangle inequality based on distances to the 

landmarks to obtain a heuristic function to be used in A* 

search. The time dependent variant of this technique is 

studied in [19] (unidirectional) and [20] (bidirectional A* 

search) where heuristic function is computed w.r.t lower-

bound graph. However, the landmark selection is very 

difficult and the size of the search space is severely 

affected by the choice of landmarks. So far no optimal 

strategy with respect to landmark selection and random 

queries has been found. Specifically, landmark selection is 

NP-hard [21] and ALT does not guarantee to yield the 

smallest search spaces with respect to fastest path 

computations where source and destination nodes are 

chosen at random. Our experiments with real world time 

dependent travel-times show that our approach consumes 

much less storage as compared to ALT based approaches 

and yields faster response times. 

 

In two different studies, The Contraction Hierarchies (CH) 

and SHARC methods (also developed for static networks) 

were augmented to time-dependent road networks in [8] 

and [9], respectively. The main idea of these techniques is 

to remove unimportant nodes from the graph without 

changing the fastest path distances between the remaining 

(more important) nodes. However, unlike the static 

networks, the importance of a node can change throughout 

the time under consideration in time dependent networks, 

hence the importance of the nodes are time varying. 

Considering the super-polynomial input size, and hence 

the super-polynomial number of important nodes with 

time-dependent networks, the main shortcomings of these 

approaches are impractical pre-processing times and 

extensive space consumption. For example, the 

precomputation time for SHARC in time dependent road 

networks takes more than 11 hours for relatively small 

road networks (e.g. LA with 304,162 nodes) [9]. 

Moreover, due to the significant use of arc flags [9], 

SHARC does not work in a dynamic scenario: whenever 

an edge cost function changes, arc flags should be 

recomputed, even though the graph partition need not be 

updated. While CH also suffers from slow pre-processing 

times, the space consumption for CH is at least 1000 bytes 

per node for less varied edge-weights where the storage 

cost increases with real-world time-dependent edge 

weights. Therefore, it may not be feasible to apply 

SHARC and CH to continental size road networks which 

can consist of more than 45 million road segments (e.g., 

North America road network) with possibly large varied 

edge weights. 

 

3. Time Dependent Path Planning 
 

We explain the difference between fastest computation in 

time dependent and static spatial networks. We also 

discuss the importance and the feasibility of time 

dependent route planning. To illustrate why classic fastest 

path computations in static road networks may return non-

optimal results, we show a simple example in Figure 2 

where a spatial network is modelled as a time dependent 

graph and edge travel times are function of time. Consider 

the snapshot of the network with edge weights 

corresponding to travel-time values at t=0. With classic 

fastest path computation approaches that disregard time 

dependent edge travel-times, the fastest path from s to d 
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goes through v1, v2, v4 with a cost of 13 time units. 

However, by the time when v2is reached (i.e., at t=5), the 

cost of edge e(v2, v4) changes from 8 to 12 time units, and 

hence reaching d through v2 takes 17 time units instead of 

13 as it was anticipated at t=0. In contrast, if the time-

dependency of edge travel times are considered and hence 

the path going through v3 was taken, the total travel cost 

would have been 15 units which is the actual optimal 

fastest path. We call this shortcoming of the classic fastest 

path computation techniques as no look ahead problem. 

Unfortunately, most of the existing state of the art path 

planning applications suffers from the no look ahead 

shortcoming and, hence, their fastest path recommendation 

remains the same throughout the day regardless of the 

departure time from the source. Although some of these 

applications provide alternative paths under traffic 

conditions (which may seem similar to time dependent 

planning at first), we observe that the recommended 

alternative paths and their corresponding travel times still 

remain unique during the day, and hence no time 

dependent planning. To the best of knowledge, these 

applications compute top-k fastest paths (i.e., k alternative 

paths) and their corresponding travel times with and 

without taking into account the traffic conditions. The 

travel times which take into account the traffic conditions 

are simply computed by considering increased edge 

weights (that corresponds to traffic congestion) for each 

path. However, our time dependent path planning results in 

different optimum paths for different departure times from 

the source. For example, consider Figure 3(a) where 

Google Maps offer two alternative paths (and their travel 

times under no-traffic and traffic conditions) for an origin 

and destination pair in Los Angeles road network. Note 

that the path recommendation and the travel times remain 

the same regardless of when the user submits the query. 

On the other hand, Figure 3(b) depicts the time dependent 

path recommendations (in different colours for different 

departure times) for the same origin and destination pair 

where we computed the time-dependent fastest paths for 

38 consecutive departure times between 8AM and 

5:30PM, spaced 15 minutes apart2. As shown, the optimal 

paths change frequently during the course of the day. 

 

 
Figure 2: Time-dependent graph 

 

One may argue against the feasibility of time dependent 

path planning algorithms due to a unavailability of the 

time-dependent edge travel-times, or b) negligible gain of 

time dependent path planning (i.e., how much time-

dependent planning can improve the travel-time) over 

static path planning. To address the first argument, note 

that recent advances in sensor networks enabled 

instrumentation of road networks in major cities for 

collecting real time traffic data, and hence it is now 

feasible to accurately model the time dependent travel 

times based on the vast amounts of historical data. For 

instance, at our research centre. Meanwhile, we also 

witness that the leading navigation service providers 

started releasing their time dependent travel time data for 

road networks at high temporal resolution. With regards to 

the second argument, several recent studies showed the 

importance of time dependent path planning in road 

networks where real-world traffic datasets have been used 

for the assessment. For example, in [23] we report that the 

fastest path computation that considers time-dependent 

edge travel-times in Los Angeles road network decreases 

the travel-time by as much as 68% over the fastest path 

computation that assumes constant edge travel-times. We 

made the similar observation in another study [24] under 

IBM’s Smart Traffic Project where the time-dependent 

fastest path computation in Stockholm road network can 

improve the travel time accuracy up to 62%. Considering 

the availability of high resolution time dependent travel 

time data for road networks, and the importance of time 

dependency for accurate and useful path planning, the need 

for efficient algorithms to enable next-generation time 

dependent path planning applications becomes apparent 

and immediate. 

 

 
(a) Static path planning 

 

 
(b) Time-dependent path planning 

Figure 3: Static vs. Time-dependent path planning 
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4. Proposed Work 
 

We propose a bidirectional time dependent fastest path 

algorithm (BTDFP)based on A* search [25]. There are two 

main challenges to employ bidirectional A* search in time 

dependent networks. First, finding an admissible heuristic 

function (i.e., lower bound distance) between an 

intermediate vi node and the destination d is challenging as 

the distance between viand d changes based on the 

departure time from vi. Second, it is not possible to 

implement a backward search without knowing the arrival 

time at the destination. We address the former challenge 

by partitioning the road network to non-overlapping 

partitions (an off-line operation) and precompute the intra 

(node-to-border) and inter (border-to-border) partition 

distance labels with respect to Lower-bound Graph G 

which is generated by substituting the edge travel times in 

Gwith minimum possible travel-times. We use the 

combination of intra and inter distance labels as a heuristic 

function in the online computation. To address the latter 

challenge, we run the backward search on the lower-bound 

graph (G) which enables us to filter-in the set of the nodes 

that needs to be explored by the forward search. 

 

We explain our bidirectional time dependent fastest path 

approach that we generalize bidirectional A* algorithm 

proposed for static spatial networks [26] to time dependent 

road networks. Our proposed solution involves two phases. 

At the precomputation phase, we partition the road 

network into non-overlapping partitions and precompute 

lower-bound distance labels within and across the 

partitions with respect to G(V,E). Successively, at the 

online phase, we use the pre computed distance labels as a 

heuristic function in our bidirectional time dependent A* 

search that performs simultaneous searches from source 

and destination. As showed in [5], the time dependent 

fastest path problem can be solved by modifying Dijkstra 

algorithm. We refer to modified Dijkstra algorithm as time 

dependent Dijkstra (TD-Dijkstra). TD-Dijkstra visits all 

network nodes reachable from s in every direction until 

destination node d is reached. On the other side, a time 

dependent A* algorithm can significantly reduce the 

number of nodes that have to be traversed in TD-Dijkstra 

algorithm by employing a heuristic function h(v) that 

directs the search towards destination. To guarantee 

optimal results, h(v) must be admissible and consistent 

(a.k.a, monotonic). The admissibility implies that h(v) 

must be less than or equal to the actual distance between v 

and d. With static road networks where the length of an 

edge is constant, Euclidian distance between v and d is 

used as h(v). However, this simple heuristic function 

cannot be directly applied to time-dependent road 

networks, because, the optimal travel-time between v and 

d changes based on the departure-time tv from v. 

Therefore, in time-dependent road networks, we need to 

use an estimator that never overestimates the travel-time 

between v and d for any possible tv. One simple lower-

bound estimator is deuc(v, d)/max(speed), i.e., the 

Euclidean distance between v and d divided by the 

maximum speed among the edges in the entire network. 

Although this estimator is guaranteed to be a lower-bound, 

it is a very loose bound, and hence yields insignificant 

pruning. With our approach, we obtain a much tighter 

bound by utilizing the pre computed distance labels. 

Assuming that an online time dependent fastest path query 

requests a path from source s in partition Si to destination 

d in partition S. The fastest path must pass through from 

one border node bi in Si and another border node bj in Sj. 

We know that the time-dependent fastest path distance 

passing from bi and bj is greater than or equal to the pre 

computed lower-bound border-to-border (e.g., LTT (bl, bt)) 

distance for Si and Sj pair. We also know that a time-

dependent fastest path distance from s to bi is always 

greater than or equal to the precomputed lower-bound 

fastest path distance of s to its nearest border node bs. 

Analogously, same is true from the border node bd(i.e., 

nearest border node) to din Sj. Thus, we can compute a 

lower-bound estimator of s by h(s) = LTT (s, bs) + LTT (bl, 

bt) + LTT (bd, d). 

 

Lemma 1.Given an intermediate node vi in Si and 

destination node d in Sj, the estimator h(vi) is admissible, 

i.e., a lower bound of time-dependent fastest path distance 

from vi to d passing from border nodes bi and bj in Si and 

Sj ,respectively. 

 

Proof.Assume LTT (bl, bt) is the minimum border-to-

border distance between Si and Sj, and b
’
I,b

’
j are the nearest 

border nodes to vi and d in G, respectively. By definition 

of G(V,E), LTT (vi, b
’
i) ≤ TDFP(vi, bi, tvi), LTT (bl, bt) ≤ 

TDFP(bi, bj, tbi), and LTT(b
’
j, d) ≤ TDFP(bj, d, tbj) Then, 

we have h(vi) = LTT (vi, bi
’ 
)+LTT (bl, bt)+ LTT (b

’
j, d) ≤ 

TDFP(vi, bi, tvi) + TDFP(bi, bj, tbi) + TDFP(bj, d, tbj) 

 

We can use our h (v) heuristic with unidirectional time-

dependent A* search in road networks. The time-

dependent A* algorithm is a best-first search algorithm 

which scans nodes based on their time-dependent cost 

label (maintained in a priority queue) to source similar to 

[5]. The only difference to [5] is that the label within the 

priority queue is not determined only by the time-

dependent distance to source but also by a lower-bound of 

the distance to d, i.e., h(v) introduced above. To further 

speed-up the computation, we propose a bidirectional 

search that simultaneously searches forward from the 

source and backwards from the destination until the search 

frontiers meet. However, bidirectional search is 

challenging in time-dependent road networks for two 

following reasons. First, it is essential to start the 

backward search from the arrival-time at the destination td 

and exact td cannot be evaluated in advance at the query 

time (recall that arrival-time to destination depends on the 

departure time from the source in time-dependent road 

networks). We address this problem by running a 

backward A* search that is based on the reverse lower-

bound graph G (the lower-bound graph with every edge 

reversed). The main idea with running backward search 

inG is to determine the set of nodes that will be explored 

by the forward A* search. Second, it is not straightforward 

to satisfy the consistency (the second optimality condition 

of A* search) of h(v) as the forward and reverse searches 

use different distance functions. Next, we explain 

bidirectional time-dependent A* search algorithm 

(Algorithm 1) and how we satisfy the consistency. Given 

G = (V, E, T), s and d, and departure-time ts from s, let Qf 

and Qb represent the two priority queues that maintain the 
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labels of nodes to be processed with forward and backward 

A* search, respectively. Let F represent the set of nodes 

scanned by the forward search and Nf is the corresponding 

set of labelled vertices (those in its priority queue). We 

denote the label of a node in Nf by dfv. Analogously, we 

define B, Nb, and dfv for the backward search. Note that 

during the bidirectional search F and B are disjoint but Nf 

and Nb may intersect. We simultaneously run the forward 

and backward A* searches on G(V, E, T) and G, 

respectively (Line 4 in Algorithm 1). We keep all the 

nodes visited by backward search in a set H (Line 5). 

When the search frontiers meet, i.e., as soon as Nf and Nb 

have a node u in common (Line 6), the cost of the time-

dependent fastest path (TDFP(s, u, ts)) from s to u is 

determined. 

 

 
Fig. 4.Bidirectional search 

 

At this point, we know that TDFP (u, d, tu) > LTT(u, d) for 

the path found by the backward search. Hence, the time-

dependent cost of the paths (found so far) passing from u 

is the upper-bound of the time-dependent fastest path from 

s to d, i.e., TDFP(s, u, ts)+ TDFP(u, d, tu) ≥ TDFP(s, d, 

ts).If we stop the searches as soon as a node u is scanned 

by both forward and backward searches, we cannot 

guarantee finding the time-dependent fastest path from u to 

d within the set of nodes in H. This is due to inconsistent 

potential function used in bidirectional search that relies on 

two independent potential functions for two inner A* 

algorithms. Specifically, let hf(v) (estimated distance from 

node v to target) and hb(v) (estimated distance from node v 

to source) be the potential functions used in the forward 

and backward searches, respectively. With the backward 

search, each original edge e(i, j) considered as e(j, i) in the 

reverse graph where hb used as the potential function, and 

hence the reduced cost3 of e(j, i) w.r.t. hb is computed by 

chb(j, i)=c(i, j)- hb(j)+hb(i) where c(i, j) is the cost in the 

original graph. Note that hf and hb are consistent if, for all 

edges (i, j), chf(i, j) in the original graph is equal to chb(j, i) 

in the reverse graph. If hf and hb are not consistent, there is 

no guarantee that the shortest path can be found when the 

search frontiers meet. For instance, consider Figure 6 

where the forward and backward searches meet at node u. 

As shown, if v is scanned before u by the forward search, 

then TDFP(s, u, ts) > TDFP(s, v, ts). Similarly if w is 

scanned before u by the backward search, the LTT (u, 

d)>LTT(w, d) and hence TDFP(u, d, tu) > TDFP(w, d, tw). 

Consequently, it is possible that TDFP(s, u,ts) + TDFP(u, 

d, tu) ≥ TDFP(s, v, ts) + TDFP(w, d, tw). To address this 

challenge, one needs to find a) a consistent heuristic 

function and stop the search when the forward and 

backward searches meet or b) a new termination condition. 

In this study, we develop a new termination condition (the 

proof of correctness is given below) in which we continue 

both searches until the Qb only contains nodes whose 

labels exceed TDFP(s, u, ts) + TDFP(u, d, tu) by adding all 

visited nodes to H (Line 9-11). Recall that the label 

(denoted by dbv) of node v in the backward search priority 

queue Qbis computed by the time-dependent distance from 

the destination to v plus the lower-bound distance from v 

to s, i.e., dbv= TDFP(v, d, tv) + h(v). Hence, we stop the 

search when dbv> TDFP(s, u, ts) + TDFP(u, d, tu). As we 

explained, TDFP(s, u, ts) + TDFP(u, d, tu) is the length of 

the fastest path seen so far (not necessarily the actual 

fastest path) and is updated during the search when a new 

common node u_ found with TDFP(s, u_, ts)+TDFP(u_, d, 

tu_ ) <TDFP(s, u, ts)+TDFP(u, d, tu). Once both searches 

stop, H will include all the candidate nodes that can 

possibly be part of the time-dependent fastest path to d. 

Finally, we continue the forward search considering only 

the nodes in H until we reach d (Line 12). 

 

Algorithm 1.B-TDFP Algorithm 

1. Input: GT,G, s:source, d:destination,ts:departure 

time 

2. Output: a (s, d, ts) fastest path 

3. FS():forward search, BS():backward search, 

Nf/Nb: nodes scanned by FS()/BS(),dbv:label of the 

minimum element in BS queue 

4. FS(GT ) and BS(G) //start searches 

simultaneously 

5. Nf← FS(GT ) and Nb← BS(G) 

6. If Nf∩ Nb_= ∅then u ← Nf∩ Nb 

7. M = TDFP(s, u, ts) + TDFP(u, d, tu) 

8. end If 

9. While dbv>M 

10. Nb← BS(G) 

11. EndWhile 

12. FS(Nb) 

13. return (s, d, ts) 

 

Lemma 2.Algorithm 1 finds the correct time-dependent 

fastest path from source to destination for a given 

departure-time ts. 

 

Proof. We prove Lemma 2 by contradiction. The forward 

search in Algorithm 1 is the same as the unidirectional A* 

algorithm and our heuristic function h(v) is a lower bound 

of time-dependent distance from u to v. Therefore, the 

forward search is correct. Now, let P(s, (u), d, ts) represent 

the path from s to d passing from u where forward and 

backward searches meet and ω denotes the cost of this 

path. As we showed ω is the upper-bound of actual time-

dependent fastest path from s to d. Let φ be the smallest 

label of the backward search in priority queue Qb when 

both forward and backward searches stopped. Recall that 

we stop searches when φ > ω. Suppose that Algorithm 1 is 

not correct and yields a suboptimal path, i.e., the fastest 

path passes from a node outside of the corridor generated 

by the forward and backward searches. Let P∗ be the 

fastest path from s to d for departure-time ts and cost of 

this path is α. Let v be the first the backward search and 

hb(v) is the heuristic function for the backward search. 

Hence, we have φ ≤ hb(v) +LTT (v, d), α ≤ ω < φ and 

hb(v)+ LTT (v, d) ≤ LTT (s, v)+ LTT (v, d) ≤ TDFP(s, v, 

ts)+TDFP(v, t, tv) = α, which is a contradiction. Hence, the 

fastest path will be found in the corridor of the nodes 

labelled by the backward search. 

 

Paper ID: SUB152522 1786



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 

Volume 4 Issue 3, March 2015 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

5. Conclusion and Future Work 
 

We proposed a time dependent fastest path algorithm 

based on bidirectional A*. Unlike the most path planning 

studies, we assume the edge weights of the road network 

are time varying rather than constant. Therefore, our 

approach yield a much more realistic scenario, and hence, 

applicable to the real world road networks. We also 

compared our approaches with those handfuls of time 

dependent fastest path studies. Our experiments with real-

world road network and traffic data showed that our 

proposed approaches outperform the competitors in 

storage and response time significantly. We intend to 

pursue this study in two different directions. First, we plan 

to investigate new data models for effective representation 

of spatiotemporal road networks. This is critical in 

supporting development of efficient and accurate time-

dependent algorithms, while minimizing the storage and 

computation costs. Second, to support rapid changes of the 

traffic patterns (that may happen in case of 

accidents/events; for example), we intend to study 

incremental update algorithms for both of our approaches. 
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