
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Review on Floating Point Adder and Converter

Units Using VHDL

Abhishek Kumar
1
, Mayur S. Dhait

2

1 Research Scholar, Agnihotri College of Engineering, Nagthana Road, Wardha (M.S), India

2 Professor, Department of E&C, Agnihotri College of Engineering, Nagthana Road, Wardha (M.S), India

Abstract: Floating Point arithmetic is the most used way of approximating real number arithmetic for performing numerical

calculations on modern computers. The advantage of floating-point representation is that it can support a much wider range of values

rather than fixed point and integer representation. Addition/Subtraction, Multiplication and division are the common arithmetic

operations in these computations. Among them floating point Addition is the most complex one. Adder is the core element of complex

arithmetic circuits, in which input should be given in standard IEEE754 format. The main objective of the work is to design and

implement a binary to IEEE 754 floating point converter for representing 32 bit single precision floating point values. Then the

converter will be placed at the input side of the designed floating point adder module to improve the overall design. The modules are

written using very high speed integrated circuit (VHSIC) Hardware Description Language (VHDL), and are then synthesized for Xilinx

vertex E FPGA using Xilinx Integrated Software Environment(ISE) design suite 10.1.

Keywords: Floating point arithmetic, single precision, IEEE 754 format, VHDL, Xilinx.

1. Introduction

The demand for floating point arithmetic operations in most

of the commercial, financial and internet based applications

is increasing day by day. Floating point operations are hard

to implement on reconfigurable hardware i.e. on FPGAs

because of their algorithm‟s complexity. While many

scientific problems require floating point arithmetic with

upper level of accuracy in their calculations. Therefore

VHDL programming for IEEE single precision floating point

adder have been explored. For implementation of floating

point adder on FPGAs module various parameters like

combinational delay, area, clock period, latency, total

number of paths/destination ports, etc will be outline in the

synthesis report. VHDL code for floating point adder is

written in Xilinx 8.1i and the Design process of Xilinx

will outline various parameters.

Since the demand for floating point arithmetic operations is

increasing day by day. Hence it becomes essential to find out

a technique to feed binary numbers directly as input for these

applications. This helps in time saving and becomes much

easier. In the current scenario, it is not possible, because, in

the floating point adder, inputs should be given in IEEE 754

format i.e. the binary inputs cannot be given directly, because

it needs to be converted to the sign, exponent and mantissa

form. Hence in this project we have also designed a binary to

floating point converter for single precision bits and will be

directly given to the inputs of floating point adder which will

solve this issue to an extent.

The converter is of is 32 bits wide and based on IEEE single

precision format. The floating point format, real arithmetic

can be coded directly into hardware operations. So, this

project emphasizes on utilizing the capabilities of floating

point format. The range of binary input given will be from 0-

256 bits, which is the maximum input range that can be

provided to satisfy the exponent range in the 32 bit IEEE 754

single precision format.

The modules are written using very high speed integrated

circuit (VHSIC) Hardware Description Language (VHDL),

and are then synthesized for Xilinx vertex E FPGA using

Xilinx Integrated Software Environment(ISE) design suite

10.1.

2. IEEE Floating Point Representation

Floating point numbers are one possible way to represent real

numbers in binary format. There are two basic formats

described in IEEE 754 format, double-precision using 64-bits

and single-precision using 32-bits.Table 1 shows the

comparison between the important aspects of the two

representations.

Table 1: Single and double precision format summary
Format Sign Exponent Mantissa

Single Precision 1(31) 8 (23 TO 30) 23(0 TO 22)

Double Precision 1(64) 11(52 TO 63) 52(0 TO 51)

Figure 1: IEEE 754 single precision format

The IEEE 754 single precision binary format

representation is shown in Fig. 1; [2] it consists of a one

bit sign (S), an eight bit exponent (E), and a twenty three

bit fraction (M or Mantissa). If the exponent is greater

than 0 and smaller than 255, and there is 1 in the MSB of

the significand then the number is said to be a normalized

number; in this case the real number is represented by (1)

Paper ID: SUB152487 1847

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

127=Bias

23;-2 m0 +22-2

m1+........+ 3-2 m20 + 2-2 m21 + 1-2 m22 =M Where

(1)(1.M) * bias)-2(E * (-1)S=Z

Sign bit determines the sign of a number, which is either 0

for a non-negative number or 1 for a negative number. A bias

of 127 is added to the actual exponent for IEEE single

precision format. The mantissa or significand is composed of

an implicit leading bit (to the left of the binary point)with

value 1,unless the exponent and 23 fraction bits to the right

of the binary point is all filled with zeros. The numbers are

always normalized and thus there is no need to explicitly

show the implicit „1‟ bit, thereby precision is increased. The

IEEE 754 standard specifies some special values. The

standard also specifies some rounding modes like: Round

toward positive infinity; round toward negative infinity and

Round toward zero; Round to nearest, ties to even; Round to

nearest, ties away from zero. These special cases will be

considered in this project.

3. Binary to Floating Point Conversion

Decimal number (base 10 real number) can be converted into

an IEEE 754 binary32 format by using the following steps:

[1]

 Consider a real number with an integer and a fraction part

such as 13.375.

 Convert and normalize the integer part into binary.

 Convert the fraction part using the following method

shown below.

 Add two results and adjust them to get a final conversion

3.1 Conversion of the Fractional Part

Consider 0.375, the fractional part of 13.375. To convert it

into a binary fraction, multiply the fraction part by 2, take the

integer part and re-multiply new fraction part by 2 until a

fraction of zero is found or until the precision limit is reached

which is 23 fraction digits for IEEE 754 binary32 format.

0.375 x 2 = 0.750 = 0 + 0.750 => b-1 = 0, the integer part

represents the binary fraction digit. Next step is to re-

multiply 0.750 by 2 to proceed.

0.750 x 2 = 1.500 = 1 + 0.500 => b-2 = 1

0.500 x 2 = 1.000 = 1 + 0.000 => b-3 = 1,

fraction = 0.000, terminated.

We found that (0.375)10 can be represented in binary as

(0.011)2. Not all decimal fractions can be represented in a

finite digit binary fraction. For example decimal 0.1 cannot

be represented in binary exactly. So it can be only

approximated.

Therefore (13.375)10 = (13)10 + (0.375)10 = (1101)2 +

(0.011)2 = (1101.011)2

Also in IEEE 754 binary32 format real values need to be

represented in normalized form. Hence it becomes 1.101011

x 2
3
 i.e. the exponent is 3 (and in the biased form it is

therefore 127+3=130 = (1000 0010)2). Now the fraction is

101011 (right of the binary point). The 32 bit IEEE 754

binary32 format representation of 13.375 as:

0-10000010-10101100000000000000000 =

41460000H.

We have done the binary to floating point conversion in

IEEE 754 format in this project. This conversion had been

done by using VHDL and later implemented in Xilinx FPGA.

3.2 Block diagram of converter

Figure 2: Block Diagram of Binary to Floating Point

Converter

This is the block diagram of the binary to floating point

converter which will be implemented. The Input A and Input

B are the 255 bits wide inputs to the floating point converter.

And Clk_I is a clock bit. Other inputs are Floating point

operation Input (Fp_op_I), which can take either value-0 or 1

which specifies addition or subtraction operation, And RM_I

is the input, which constitutes the rounding mode bits. Mostly

four rounding modes are considered in the adder/subtractor

block and they are [00,01,10,11].

 Similarly the output ports of the converter consists of

Operand A, Oper A and Operand B, Oper B, both of them

should be std_logic_vectors of size 32. It consists of sign bit,

exponent bits and mantissa bits in the output corresponding

to the inputs. Other output ports are the clock output

(Clk_O), floating point operation output (Fp_op_O), it may

be 0 or 1, and the Rounding Mode Output (RM_O), which

can be any of these values [00,01,10,11]. To obtain the full

functionality of the converter unit, we have integrated it into

an adder module.

3.3 RTL view and output simulation of converter

Paper ID: SUB152487 1848

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 3: RTL schematic for Binary to Floating point

Converter.

Figure 4: Output simulation for Binary to Floating point

Converter.

4. Algorithm For Single Precision Floating

Point Adder

1) Separating signs, exponents and mantissas of both A and

B numbers.

2) Considering the special cases:

Operation with A or B equal to zero

Operation with ∞

Operation with NaN

3) Specifying which type of numbers are given:

Normal

Subnormal

Mixed

4) Shifting the mantissa of lower exponent number to the

right [Exp1- Exp2] bits. Considering the output exponent

as the highest exponent.

5) Working with the operation symbol and both signs to

calculate the output sign and determine the operation to

do.

6) Addition/Subtraction of the numbers and detection of

mantissa overflow (carry bit).

7) Standardizing mantissa by shifting it to the left up, the

first one will be at the first position and according to the

carry bit updating the value of the exponent and shifting

over the mantissa.

8) Detecting overflow or underflow of the exponent (result

NaN or ∞)

5. Floating Point Adder Design

5.1 Existing Method

There are two existing cases for the floating point addition

algorithm. [7]

Case I: When both the numbers are of same sign i.e. when

both the numbers are either +ve or –ve. It means that the

MSB of both the numbers are either 1 or 0.

Case II: when both the numbers are of different sign i.e.

when one number is +ve and other one is –ve, it means that

the MSB of one number is 1 and other is 0.

5.2 Proposed Method

The black box view and block diagram of the single precision

floating point Adder is shown in figures 5 and 6 respectively.

The input has been separated into their sign, mantissa and

exponent components.

Figure 5:.Black box view of single precision Adder

The main hardware modules for a single-precision floating-

point adder are the exponent difference module, right shift

shifter, 2‟s complement adder, leading one detector, left shift

shifter, and the rounding module.

Figure 6:.Micro-architecture of standard floating-point

Adder

Paper ID: SUB152487 1849

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

5.3 Exponent Difference Module

The exponent difference module has the following two

functions:

• To compute absolute difference of two 8-bit numbers.

• To identify if e1 is smaller than e2.

Figure 7:.Block diagram of exponent difference module.

The block diagram of the exponent difference module, RTL

schematic and Output simulation are shown in Fig.7, 8 and 9

respectively.

Figure 8: RTL schematic of exponent difference module

Figure 9: Output simulation for exponent difference module

This exponent difference module has been designed by using

Hardware Description Language (VHDL), and are then

synthesized for Xilinx vertex E FPGA using Xilinx

Integrated Software Environment(ISE) design suite 10.1. In

the similar manner we are also designing the other modules

like right shift shifter, 2‟s complement adder, leading one

detector, left shift shifter, and the rounding module.

6. Literature Review

Field Programmable Gate Arrays (FPGA) are increasingly

being used to design high end computationally intense

microprocessors capable of handling both fixed and floating

point mathematical operations. Addition is the most complex

operation in a floating-point unit and offers major delay

while taking significant area.

According to Reshma Cherian And Nisha Thomas they have

implemented binary to floating point converter, which was

based on IEEE 754 single precision format, and has delay of

17.381 n sec and power utilization was 0.295 W In "

Implementation of Binary to Floating Point Converter using

HDL".

According to Sunita S. malaj, S.B. Patil, Bhagappa R.

Umarane, In "VHDL Implementation of Interval Arithmetic

Algorithms for Single Precision Floating Point Numbers”,

The author proposes a new approach where the design and

implementation of single precision (32bit) Interval

Arithmetic Adder/subtractor unit is carried using VHDL for

computing interval arithmetic operations & functions suited

for hardware implementation.

According to Jairaj Bhattacharya, Aman Gupta, and Anshul

Singh “A High Performance Binary TO BCD Converter for

Decimal Multiplication ", this paper presented a novel

architecture for Binary to BCD conversion used in decimal

multiplication. The proposed converters flexible and can be

plugged into any homogeneous multiplication architectures to

achieve better performance irrespective of the method used

to generate binary partial products. The proposed

architecture shows, on an average, an improvement of 28% in

terms of power-delay product.

7. Conclusion

This paper shows the efficient use of floating point Converter

and floating point Adder module. This paper presents an

Implementation of an efficient 32 bit floating point Adder

with floating point Converter module at its input port to

support IEEE 754 standard with optimal chip area and high

performance using VHDL. Based on the above discussion, it

is clear that a floating point adder element in any processor

design and a processor spends considerable amount of time

in performing floating point conversion and addition. Hence

optimizing the speed and area of the module is a major

design issue. An improvement in conversion and addition

speed by using new techniques can highly improve system

performance. So the aim of our project is to analyze the

problem and study the different ways to overcome the

problems in a order to enhance the system performance.

References

[1] Reshma Cherian#, Nisha Thomas*, Y.Shyju#

“Implementation of Binary to Floating Point Converter

using HDL”pp. 461-64,©2013 IEEE

[2] Sunita.S.Malaj, S.B.Patil, Bhagappa.R.Umarane,

"VHDL Implementation of Interval Arithmetic

Algorithms for Single Precision Floating Point

Numbers” International Journal of Scientific &

Engineering Research Volume 4, Issue3, March-2013.

Paper ID: SUB152487 1850

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[3] Jairaj Bhattacharya, Aman Gupta, Anshul Singh.,"A

High Performance Binary TO BCD Converter for

Decimal Multiplication” International Symposium on

VLSI Design, Automation and Test, 2010.

[4] Guillermo Marcus, Patricia Hinojosa, Alfonso Avila

and Juan Nolazco-Flores “ A Fully Synthesizable

Single-Precision,Floating Point Adder/Substractor and

Multiplier in VHDL for General and Educational Use,”

Proceedings of the Fifth IEEE International Caracas

Conference on Devices, Circuits and Systems,

Dominican Republic, Nov.3-5, 2004.

[5] "Design and Implementation of IEEE-754 Addition and

Subtraction for Floating Point Arithmetic Logic

Unit",V.vinay chamkur,

[6] W. Kahan “IEEE Standard 754 for Binary Floating-

Point Arithmetic,”1996

[7] Preeti Sudha Gollamudi, M. Kamaraju, “ Design of

High performance IEEE-754 single precision (32 bit)

floating point adder using VHDL. IJERT, Vol.2 Issue 7,

pp. 2264-75, July-2013.

[8] IEEE Standard for Binary Floating-Point Arithmetic,

ANSI/IEEE Standard 754, 1985.

[9] Metin Mete, Mustafa Gok, “A multiprecision

floating point adder” 2011 IEEE.

[10] Ali malik, Soek bum ko , “Effective implementation of

floating point adder using

pipelined LOP in FPGAss,” ©2010 IEEE.

[11] Karan Gumber,Sharmelee Thangjam “Performance

Analysis of Floating Point Adder using VHDL on

Reconfigurable Hardware” in International Journal of

Computer Applications (0975 – 8887) Volume 46–

No.9, May 2012

Author Profile

Abhishek Kumar received the B.E. in Electronics &

Telecommunication Engineering from Shri Shankarprasad

Agnihotri College of Engineering, Wardha, India in 2012.Currently

he is research scholar and pursuing M.Tech in Electronics from

Agnihotri College of Engineering, Nagthana, Wardha India.

Prof. Mayur S. Dhait received his B.E in Electronics &

Communication from KITs Ramtek, India and M.Tech in

Embedded system design from IIIT, Pune, India. He is working as

Prof. in Agnihotri College of Engineering, Nagthana, Wardha,

India.

Paper ID: SUB152487 1851

