
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Integrated Approach to Detect Vulnerabilities in

Source Code

Monica Catherine S
1
, Geogen George

2

1Information Security and Cyber Forensics, SRM University, India

2Cyber Security Research Centre, SRM University, India

Abstract: Nowadays, security breaches are greatly increasing in number. This is one of the major threats that are being faced by most

organisations which usually lead to a massive loss. The major cause for these breaches could potentially be the vulnerabilities in

software products. Though there are many standard secure coding standards like CERT (Computer Emergency Response Team),

software developers fail to utilize them and this leads to an unsecured end product. The difficulty in manual analysis of vulnerabilities in

source code is what leads to the evolution of automated analysis tools. Static and dynamic analyses are the two complementary methods

used to detect vulnerabilities in source code. Static analysis scans the source code without executing it but dynamic analysis tests the code

by executing it. Each has its own unique pros and cons. The proposed approach helps the developers to correct the vulnerabilities in

their code by an integrated approach of static and dynamic analysis for C and C++. This eliminates the pros and cons of the existing

practices and helps developers in the most efficient way. It deals with common buffer overflow vulnerabilities, format string

vulnerabilities and improper input validation. The whole scenario is implemented as a web application.

Keywords: Secure coding, Static analysis, Dynamic analysis, Buffer overflow

1. Introduction

Cyber security attacks have increased exponentially in the

last few years. In 2013, it was found that the number of

security breaches rose up to 62% from 2012[1]. Buffer

overflow errors are the leading threat in most cases and

21% of the Common Weakness Enumeration (CWE)

threat categories cause it [2]. A report by USA today stated

that 43% of companies in the US experienced a data

breach in the year 2013[3]. The major cause for some of

these breaches could potentially have been the

vulnerabilities in software products.

There are many causes for vulnerabilities in software

products, but the most common ones are flaws introduced

by developers during program construction. Though there

are many standard secure coding practices that are to be

followed during code construction, software developers

fail to follow them and thus this leads to major threats in

the end product.

Therefore, there is a great demand for detecting

vulnerabilities in software product. But detection of code

during development phase itself will reduce the time, risk

and cost of correcting it. So, careful analysis of code

during development phase is a necessary action but it is

more difficult to do manually.

Static and dynamic analyses are the two complementary

methods that are used to detect vulnerable codes. Static

analysis just scans the source code to check for the flaw

and this eliminates the need of executing it. On the other

hand, dynamic analysis tests the code by executing it along

with the test cases. Many tools are available for the above

said methods in the market but both have their own pros

and cons.

Static analysis is fast and simple to use. It scans the code

line by line and detects the flaws that can lead to

vulnerability in the software. Since it scans the source code

it can be used easily while constructing the code and the

cost of fixing it will be low when it is detected earlier. On

the negative side, it generates many false positives and

false negatives. For example, Splint by Larochelle and

Evans, is a lightweight static analyzer which generates a

number of false positives and negatives.

On the other hand, in dynamic analysis false positives and

negatives are reduced but it increases the duration of

analysis. Also, it may miss some flaws without detecting

them because some execution path might not have been

executed during testing.

Since the two approaches have positive as well as negative

aspects, an integrated approach which employs both of the

ideas effectively is a better option. And that should adopt

the strengths of the two and eliminates their weaknesses.

In the proposed system, static and dynamic analysis is

combined. First, source code is subjected to static analysis

and the result is stored. Secondly, it is subjected to

dynamic analysis where the code is executed along with

the test cases and vulnerabilities are detected during

runtime. Finally, warnings are displayed to the user with

alternative solutions. It mainly focuses on common buffer

overflow vulnerabilities, format string vulnerabilities and

improper input validation. Also, it is implemented as a

web application which extends the benefits by making it

platform independent.

The paper comprises of five sections. Literature review is

described in section II, design and methodology in section

III, Results and findings in section IV, conclusion and

future work in section V.

2. Literature Review

Piromsopa et al [5] defines buffer overflow and proves the

necessary condition for preventing the buffer overflow

attack. Here, buffer overflow is described as the condition

where the data transferred to a particular buffer exceeds

Paper ID: SUB152471 1759

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

the storage capacity of the buffer and some of the data to

be copied overflows into the succeeding buffer, where the

data was not supposed to go into. It therefore proves that

the preservation of the integrity of addresses across

domains as a necessary condition for preventing buffer-

overflow attacks. Erik et al [6] talks about improper input

validation and current best practices to minimize it.

Special characters should not be allowed in inputs,

character encoding should be done for dynamic inputs,

inputs should be sanitized such that malicious characters

should be removed before sending it to the database are

some of the proper input validation steps.

Nishiyama et al [7] proposed a tool called “SecureC” that

is aimed at protecting applications from general buffer

overflow attacks. Here, it translates the given source code

into a security enhanced code such that it avoids buffer

overflow. One of the methods it uses is “shadow stack”

where the dynamic memory is allocated externally to the

normal stack frame and last page of the shadow stack is

made read only. It is done by linking the source code with

SecureC runtime library. Fig.1 is an example output of this

tool; here buffer overflow will lead to segmentation fault.

Figure 1: Source Code and Translated Code

Aishwarya et al [8] introduced a tool which is used to

locate vulnerable files which are known to have been the

root cause for buffer overflow in the application. The tool

has two stages; firstly, a record of the stack trace is made

through the entire normal execution of the application. In

the second stage, a record is made of the stack trace with

an injection of the buffer overflow attack through the

entire execution of the application.

Finally, a comparison of the two traces is made and then a

result is determined. If the stack traces are found to be

similar, this means an attack will not be successful.

However, if they are not similar, an attack may be

successful.

Chuang et al [9] proposed a method for bounds checking

which helps to increase the efficiency. It basically checks

the memory locations that are prone to buffer overflow

attacks and then the rest can be safely pruned away.

Kendra et al [10] tested the basic capabilities of some

static and dynamic tools which detects buffer overflow.

Using twenty two attributes they have created many test

cases for testing the tools and have calculated detection

rate, false alarm rate and execution time of the tool.

3. Design and Methodology

The proposed system is a web application which helps the

developers to detect vulnerable code during the

development phase. This is an integrated approach

involving static and dynamic analysis which gets the file

as input and then analyses the code and also generates

warnings. The proposed system mainly focuses on buffer

overflow vulnerabilities, format string vulnerabilities and

improper input validation. HTML5 was used to create the

webpage along with python CGI scripts. Code evaluation

was also done in python language using python 2.7.

Apache2 and MySQL were the servers and database used.

Currently, it is designed for C and C++, but it will later be

enhanced for other languages as well.

The web page is designed in such a way that the user can

upload the source code as a file (either in .c/.cpp based on

the language chosen or .txt format). The application also

has a different tab for each of the different languages. The

uploaded file is stored in a predefined location in the

server. Later it is converted into a .c or .cpp file based on

the language chosen.

The goal of this application is to detect all vulnerabilities

in the code by an integrated approach consisting of static

and dynamic analysis and which combines the positives of

both. The overall process is given in Fig.2. It comprises of

two modules:

 Static Analysis

 Dynamic Analysis

Figure 2: Overall flow of the process

Paper ID: SUB152471 1760

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

A. Static Analysis

This module works on source code and tests the code

without executing it. Initially, built-in functions that may

lead to vulnerabilities are stored in a table of MySQL

database. After the user uploads the file via the webpage,

the file is forwarded to static analyzer for analysis. Here, it

focuses on two steps before checking for vulnerable code.

First, all the unsafe functions are marked with line

numbers by comparing them with already stored functions.

Secondly, bound values for all variables used in the

program are stored in a table. These steps can reduce the

time and increase the efficiency of analysis because only

the marked lines will be checked for vulnerabilities, which

means it reduces the time taken compared to testing each

and every line of the program. A separate module is

written for each type of vulnerability. For example

„strcpy()‟ and „strcat()‟ are vulnerable because they may

lead to buffer overflow but they can be used in a secure

way also. So in order to check whether the particular

function used is vulnerable or not, a separatemodule is

written. An example of this is Fig.3.

Figure 3: C code with vulnerable function

In Fig.3, initially, „strncpy‟ is marked vulnerable and then

bound values of buffer are stored. While using „strncpy‟

the third parameter value should be the size of the

destination buffer minus one. At this point, the buffer is

getting overflowed since the buffer size is less than third

parameter value. A separate module is written to check

buffer overflow condition and the result is returned to the

main function. Thus the application throws a warning to

correct it.

B. Dynamic analysis

This module involves the actual running of the code. The

.c or .cpp file that is stored in server is forwarded for

dynamic analysis. This file will be linked with the library

that is written in C language which manages the dynamic

memory allocation. Then the linked file is compiled with

“gcc” and “g++” compiler for .c and .cpp respectively. The

compiled code is executed and vulnerabilities are detected

during runtime. Since vulnerable code is allowed to run, it

is executed in a sandboxed environment using

Sandboxie[11] an open source sandbox and thus it is

isolated from the memory of the host system. A

prerequisite of this module is the test case table. All

possible test cases are stored in the database initially. Here,

test cases are the randomized input that is to be given

when the code runs and it is based on the data type of the

variable that accepts it. During the execution of the code

these stored test cases are applied and the buffer overflow

condition is checked. Also, check value is inserted after

memory allocated for each buffer and therefore buffer

overflow is detected when this check value is changed.

The goal of this module is to detect the vulnerabilities that

are not covered by the static analyzer and it mainly focuses

on buffer overflow vulnerability. An example is shown in

Fig 4.

Figure 4: Example for buffer overflow

In line 4 of Fig.4 the vulnerability can be analyzed by a

static analyzer but in line 7 it fails to analyze because the

memory is dynamically allocated. At this point the

dynamic analyzer can help to detect it.

4. Results and Findings

The goal of this approach is to detect vulnerable code at

the time of development. It takes a file as input and

processes it. The web application acquired the file and then

the file was sent for static and dynamic analysis.

In static analysis, the code was scanned by our analyzer

and all variables, its type and allocated memory size were

stored in database. The built-in functions (for example:

strcpy()) were also stored with line numbers. Later, those

marked line numbers were scanned for insecure functions.

For each vulnerable built-in function a separate module

was written to check for vulnerability. With Fig.4 as an

example, an explanation for how strcpy() function was

handled in the application is given.

When the code was analyzed statically, all variables

declared including str1and str2 were stored in a table in a

MySQL database along with their data type and allocated

memory size. After that, the built in functions „strcpy‟ in

line 4 and 7 of Fig.4 were marked. Since both are insecure

according to secure coding standards, they were marked as

insecure and forwarded for evaluation. In line 4, the static

analyzer detected the vulnerability because the size of str1

was less than the size of str2 and all the detected

vulnerabilities were stored in a file. But in line 7 it was not

evaluated as vulnerable since memory wasn‟t allocated

statically. This was handled later in dynamic analysis. In

dynamic analysis, the code was linked with the library that

is created in C and where this buffer overflow condition is

checked. When “malloc” was called a function in the

library linked was invoked. A check value was inserted at

the upper boundary of the allocated memory size for the

pointer “ptr”. When the code prompted for a user input for

“siz” randomized inputs were supplied based on the data

type and buffer overflow was checked when the control

reached the end of the code. It was detected that for user

inputs less than „16‟, buffer overflow can occur. The

detected vulnerabilities were stored in a file. The stored

vulnerabilities by both the analyzers were displayed to the

Paper ID: SUB152471 1761

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

user as a response. Fig.5 explains how it responds to

format string vulnerability.

Figure 5: Format String vulnerability

The number of format specifiers did not match the

variables given, hence it threw a warning. Static analysis

was simple and fast but it generated false positives and

false negatives also. For example, when a buffer was

allocated dynamically, the buffer size could not be

predicted in static analysis hence it did not throw warnings

though there was a chance for that buffer to be overflowed.

Since the proposed method is an integrated approach of

static and dynamic analysis, false positives and negatives

are reduced and most of the flaws are covered. However, it

cannot detect 100% of the flaws. Current implementation

is in C and C++ but the same method with slight changes

can be used for other languages like C#, Python etc.

5. Conclusion and Future Work

The integrated approach of static and dynamic analysis is

more efficient and detects most of the vulnerable code in

the program and thus helps the developer to correct the

vulnerabilities in code which leads to a flawless secure end

product. Therefore this reduces the security incidents that

happen because of vulnerable source code. Currently, the

proposed system has focused only on the buffer overflow

vulnerability, format string vulnerability and improper

input validation in C and C++, still the idea of integrating

the two analysis approaches can be used for detecting

vulnerabilities in Python, C#, java, etc.

References

[1] Symantec Corporation Internet Security Threat Report

2014 :: Volume 19

[2] Cisco 2014 Annual Security Report

[3] http://www.usatoday.com/story/tech/2014/09/24/data-

breach-companies-60/16106197/

[4] http://cwe.mitre.org/top25/.

[5] Piromsopa, Krerk, and Richard J. Enbody. "Buffer-

overflow protection: the theory." Electro/information

Technology, 2006 IEEE International Conference on.

IEEE, 2006.

[6] http://www.sans.org/reading-

room/whitepapers/application/web-application-

injection-vulnerabilities-web-app-039-s-security-

nemesis-34247

[7] Nishiyama, Hiroyasu. "SecureC: Control-flow

protections against general buffer overflow attack."

Computer Software and Applications Conference,

2005. COMPSAC 2005. 29th Annual International.

Vol. 1. IEEE, 2005.

[8] Iyer, Aishwarya, and Lorie M. Liebrock.

"Vulnerability scanning for buffer overflow."

Information Technology: Coding and Computing,

2004. Proceedings. ITCC 2004. International

Conference on. Vol. 2. IEEE, 2004.

[9] Chuang, Weihaw, et al. "Bounds checking with taint-

based analysis." High Performance Embedded

Architectures and Compilers. Springer Berlin

Heidelberg, 2007. 71-86.

[10] Kratkiewicz, Kendra, and Richard Lippmann. "A

taxonomy of buffer overflows for evaluating static and

dynamic software testing tools." Proceedings of

Workshop on Software Security Assurance Tools,

Techniques, and Metrics. Vol. 500. 2006

[11] http://www.sandboxie.com/index.php?HowItWorks

Paper ID: SUB152471 1762

