
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Design of Application to Detect Images Embedded

with Malicious Programs

Robert T. R. Shoniwa
1
, Geogen George

2

1Information Security and Cyber Forensics, SRM University, India

2Information Technology, SRM University,India

Abstract: In today’s world, malware can be propagated to victim systems in an increasingly diverse number of ways. One of these

methods involves the passive distribution of malware by embedding in JPEG images which goes on to highlight that even simple images

can be manipulated maliciously by criminals. The aim of this paper is to design an application that partially acts as a steganalysis tool to

scan, detect and notify the user of the presence of a payload in either one or a set of selected images.it will then proceed to analyze the

payload and verify whether it is a malicious program or not. It will also give a brief summarized file analysis of the detected payload.

Ultimately, this will help highlight the need to consider images as a potential attack vector and then also offer a corresponding solution

to this problem.

Keywords: Steganography, Steganalysis, malware analysis, image analysis, image compression

1. Introduction

In July 2013 researchers at Sucuri [1] reported on an

incident where they found an odd backdoor on a site that had

been compromised. The oddity arose from the point that the

said backdoor did not rely on the normal patterns such as

base64 and gzipencoding to hide the contents contained

within it. It actually stored its data within the EXIF header

location of a JPEG image. In addition to that, it also used the

two PHP functions to read the headers and then ultimately

execute itself. This clearly illustrate that images can now be

used as methods to try and compromise protected systems.

However, an image on its own is relatively harmless but the

moment a trigger is initiated; the image will immediately

become an active participant in the malicious activity.

This Sucuri example highlights how malicious data can be

ingeniously stored in the EXIF header of an image. This can

lead to even more ways that JPEG images can be used

maliciously. Specifically, this can be done by focusing on

the point that, most antiviruses and Intrusion Detection

Systems (IDSs) do not possess the facility to exercise both

Steganalysis and file signature comparison with a virus

signature database on images. It should be noted that the

currently existing potential solutions to detecting malicious

programs include the above mentioned IDSs and antiviruses.

The benefit of the antivirus lies in that it has a virus

signature database to scan files in a static manner and can

also implement sandboxing to test suspicious programs and

the way they operate.

However, the shortcomings of this methodology are clearer

when it is dealing with a stego-image containing a malicious

program. Unless the trigger has been activated, the image

will remain an “innocent” image and not draw any

suspicion. The benefit of IDSs lies in that they have the

capability to scan incoming and outgoing packets at a host

but the drawback is similar to that of antiviruses. The

problem lies in that they both end up being mainly reactive

and never proactive. This is because if they do create a file

signature for an image, the same malicious payload may be

embedded within another image and this will have its own

new signature. All an attacker would need to do would be to

continually switch the same malicious program among a

large set of images. Hence, this brings about the need for the

scanning tool being proposed in this project. It will be able

to analyze an image file and retrieve any data it may be

hiding and then ultimately hand it over to the antivirus for

proper scanning if they are integrated together properly. This

would overcome the problem where sandboxing and static

analysis through signature based scanning do not detect

anything malicious about the image.

The design will be described considering the following

scenario as a premise. In this case, an attacker would have

embedded a malicious program in an image using

steganography, transferred it to a target host and then

executed the malicious program. This leads to the

implementation of the scanning application which will be

used to counter the effects of the exploit scenario that has

just been described and ultimately highlight the need for its

use in future. The second section will comprise of a

literature review, while the third section of the paper will

proceed to explain the design of the proposed scanning

application as well as a description of the proof-of-concept

involving the actual embedding of a malicious program in an

image. The fourth section will focus on the discussion of the

propose design while the fifth section will offer the

conclusion on the topic and future changes that can be made

to the proposed application design.

2. Literature Review

In a paper published by Sajedi and Jamzad [2], they focused

mainly on steganography methods. The paper discussed how

due to the variety of contents found within images, the

stego-images output by a steganography method are capable

of possessing different and varying levels of detectability

when they are scanned by steganalysis tools. This basically

meant that a steganography method could result in statistical

artifacts that are less detectable on some images compared to

other images. By statistical artifacts they were referring to

Paper ID: SUB152465 1899

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

any signs that are left or that are present on the image that

can help prove or act as a sign that steganography has taken

place. In addition to that, they analyzed different features of

images to find the similarity between proper cover images

for each steganography method they tested. Among those

methods they listed were F5, Model-based steganography,

Perturbed Quantization (PQ) as well as YASS which all

manipulate some Discrete Cosine Transform (DCT)

coefficients of images in order to embed secret data. They

went on to discuss more about the ideal kinds of images to

use that will leave the least traces of statistical artifacts after

steganography. It aided in the selection of a steganography

algorithm to implement in this project. The goal of this

search was not to find an algorithm that was unbroken,

because that would have made the Proof-of-concept even

more difficult to implement and also lead us out of the scope

of this project.

Methods to combat this were researched by Chamorro and

Miyatake [3] who focused mainly on steganalysis of images

embedded with data. Their paper stated that steganalysis is a

technique that tries to detect some statistical evidence of

hidden data in an image under analysis. Many of the

steganalysers can detect stego-images generated by LSB

steganography with a high detection rate. However if the

stego-image is generated using JPEG steganography, these

methods will show inefficiency to detect the presence of

hidden message. It also stated that to select an efficient

steganalysis method, some aspects must be considered. For

example, false negative and false positive error rates are

sufficiently small and independent of the amount of the

secret message. In addition to that, the amount of features

extracted from images must be as compact as possible. Some

steganalysis methods were also highlighted include

Difference Image Histogram Method (DH), Closest Color

Pair Method (CC) and Wavelet Statistical Moments based

Method (FE).

Yan and Ansari [4] wrote a paper which highlighted the

aspect of unpacking obfuscated programs. It described how

unpacking is the process of stripping the packer layer (or

layers) of packed executables to restore the original contents

so that antivirus programs and security researchers can

inspect and analyze the original executable signatures. There

are three different techniques to unpack a packed file which

are manual unpacking, static unpacking and generic

unpacking. The paper therefore highlights that antiviruses

typically use static unpacking while others may use

emulation to implement generic unpacking. Also, of the

known unpacking methods, the more automated one that can

be used by the scanner is static unpacking unlike generic that

may put the system at risk and manual that needs frequent

user interaction. Therefore static would be ideal for

implementation within an application such as the one being

proposed in the project.

3. Design

The system being proposed is a scanning application that

can detect the presence of malicious programs in JPEG

images, the extraction and reporting of the found data. In

order to do that, as shown in Fig 1, a proof-of-concept will

have to be done in order to prove that the threat is real and

that images may be used as a potential attack method. The

scanning application will primarily focus on the steganalysis

of images.

The goal is to find out if any data is hidden in an image and

then proceed to extract and analyze the data which could

potentially be a malicious program. This method will only

use a simple data-set in the proof of concept and resulting

detection procedure. Standard and up to date enterprise virus

signature databases will not be used but a facility that can

possibly be used to enable future integration can also be

noted. This design is comprised of three modules which are:

 Embedding module

 Execution module

 Scanning application

A. Embedding Module

The embedding module will firstly engage in the creation of

the malicious program. First of all, the embedding module

will involve the use of Msfpayload to generate a reverse-

TCP payload and return the generated shellcode in Ruby

language. It will also include setting the port on the

attacking host that will be listening for the connection back

from the target as well as setting its own IP address so it can

be referenced by the target host. After that, the shellcode is

then encoded using Msfencode. The malicious payload is

then returned as an executable file after encoding and

control is transferred to the obfuscation program, to help

evade antivirus software. Some compression packers‟

unpacking process involves four consecutive steps which are

modified LZMA (Lempel–Ziv–Markov chain algorithm)

decompression, E8/E9 decompression, rebuilding of the

import table and then ultimately jumping to the Original

Entry Point (OEP) of the program. The compression and

decompression as well as the fact that all this occurs in

memory is how packers typically evade antiviruses.

This then assigns a new file signature to the malicious

program and then transfers control to the steganography

tool. Embedding of malware in stego-image can involve the

use of the F5 algorithm [5]. F5 is a steganography algorithm

for hiding information in JPEG images through

manipulation of the Transform Domain steganography

method which involves the use of Discrete Cosine

Transforms (DCT). This is all through the use of the JPEG

Lossy compression mechanism [2]. After the DCT is done

and the quantization stage takes place, the embedding

process occurs.

Paper ID: SUB152465 1900

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 1: Use case Diagram of system actors and involved

components

B. Extraction and Execution Module

The procedure for how the program will execute [4] is based

primarily on how antiviruses operate. The obfuscation

program changes the Original Entry Point (OEP) and

therefore will return a different offset when the antivirus

tries to locate offset A as normally expected. Due to this, the

antivirus will not detect the malicious program‟s signature

and will allow it to execute. In addition to that, the antivirus

typically does not contain steganalysis or extraction tools for

the analysis of steganography in images and therefore will

not detect anything suspicious in the stego-image we would

have created containing the malicious program. Therefore,

when triggered, the stego-image will have the malicious

program extracted from it and executed in memory. This

program will then request a connection to the attacking host

and then offer it command shell access to the target. The

attack host will be running a multi-handler exploit from

within the Metasploit framework which, in turn, will also be

running a listener for the specified payload and port.

C. Scanning application

The scanning application will load the image to be scanned

into memory. The image will then have a unique ID

assigned to it. The goal of doing this is so that if the same

image or a similar image with a different file name is

scanned during this session, the scanner will not have to

undertake the whole procedure again but just treat it in the

same manner it did the preceding image with the same ID.

This will help make the procedure quicker and more

efficient. This is illustrated in the activity diagram in Fig 2.

The steganalysis algorithms

[3] (chi-square attack, visual

detection, histogram analysis) will then be used to check if

the image has any steganography artifacts. This refers to any

signs or properties of the image that could be signs of the

fact that steganography has been implemented on it. If this is

not so, an Image Threat Level of 0 will be set due to the fact

that there will be no sign of any steganography occurring on

the image. The scanner will then attempt to extract the data

from the stego-image and retrieve it. After that, it will

analyze the headers of the retrieved data to check for magic

numbers. Magic numbers are unique identifiers located in a

file‟s header that describe the file type of the file itself.

Figure 2: Activity Diagram for Scanning Tool

Typically, executable files such as .exe and .dll files will be

the most suspicious. In that case, we will then set a threat

level for images where non-executable files will be assigned

a threat level of 1. This would basically mean that they are

potential threats to the system but of an intermediary level

due to the fact that they are not executable. If the data is in

Portable Executable (PE) format then the image threat level

is set to 2, the highest level. A command is then run on the

extracted file and it will return the kind of packer used on

the file as well as its basic properties such as size. A hash (or

in some cases the extracted file itself) will also be submitted

to Virustotal to know if the file is malicious or not.

Ultimately, a report will then be generated with this data

showing what the scanner found out after its activities.

Paper ID: SUB152465 1901

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

4. Discussion

The proof of concept can be successfully simulated as

having been deployed to the target machine via a

compromised USB drive and then having the malicious

program extracted and executed through the exploitation of

the autorun.inf file on unpatched systems [13]. A hidden

batch program will be initiated and used to extract the

malicious program from the stego-image and then create a

directory within the target system where it will then store the

extracted malicious program. This will highlight the need for

the proposed application. The goal of this project is to

develop an application which is able to detect the presence

of malicious programs within images as illustrated in the

stages of the activity diagram in Fig 2. The design of the tool

integrates a number of already existing steganalysis methods

into the tool itself which included the statistical attack

techniques Chi-square attack [6] and Histogram analysis

attack [6]. The source code for these techniques can be

gathered from already existing open source tools such as

stegbreak/stegdetect [5] as well as porting of readily

available Matlab modules‟ code to the tool.

When the tool is run on a set of JPEG images embedded

with small malicious programs it will most likely report the

presence of statistical artifacts. This can then be used as

evidence of the high probability that the reported images

were images containing hidden data. The application‟s test

cases will include images that have used F5, Yet another

Steganography Scheme (YASS), Outguess and JSteg. Of the

four tools used, the only tool that will most likely manage to

successfully bypass the first analysis stage of the tool is

YASS. The reason is based on the fact that the first stage

involves the use of Chi-square attacks and Histogram

analysis in order to act as statistical methods to detect

steganography in the images. The reason why YASS may

not be detected is because it is known to be undetectable by

most blind steganalysis attacks [6] [8]. This stage‟s

efficiency can be further increased by adopting the method

implemented by the Gargoyle [12] proprietary system which

maintains a signature database of all steganography tools

which can also help quicken the procedure of detection and

extraction of data from stego-images by transforming the

attack from a blind-steganalysis attack to a targeted attack

towards a specific method.

After running all the statistical attack methods on the set of

images, the application will then assign a threat level to each

of the images and also generated a hash for them in the event

that an image was encountered more than once to eliminate

redundant processing. This will resulted in fewer images to

process on in the second stage and increase the application‟s

efficiency. This stage involves the use of feature extractors

[8] which can also be ported from already available Matlab

modules online [10]. The simplest stego-images to extract

data from are typically JSteg due to the fact that it uses no

key and anyone can extract the data [9]. Another optional

method (which would be more costly) could have involved a

statistically-targeted attack on selected steganography

algorithms. This would involve running a dictionary attack

on the set of images in order to try and acquire the

passphrase or key used to embed data in the stego-image.

Due to this, the second stage will probably take more time

than other stages. However, the chief benefit lies in that if a

set of images comes from one location (USB key drops or

passive propagation through a folder on an ftp site); it is

highly likely that the attacker will use the same or a similar

key for the extraction of the hidden data.

After the extraction of data, the magic number for each of

the extracted data will be analyzed as well. The application

is specifically meant to target PE format files such as .dll

and .exe files. However, the report generated will account

for all extracted data as well so a set of all known magic

numbers, will be used to help categorize the extracted data.

PE files, even when obfuscated with tools such as Obsidium,

Themida or any other packer, will still have the PE header

containing the PE magic number which is 4D5A in

hexadecimal. Therefore, the rest of the extracted files will be

set to a threat level of 1 while those of PE format were set to

level 2. Attempts will be made to unpack the programs if

obfuscated but this will also be a processor-intensive

procedure. In such a case, the use of the Taggant system [11]

which maintains a database of all packers and their unique

signatures could also help reduce the amount of time taken

during this process. In addition to that, the extracted

executables will also submitted for scanning to Virustotal to

check if they contain known signatures associated with

malicious programs. This can be further improved upon by

submitting them all for dynamic analysis through

sandboxing [4] in case their signatures are not known. The

reason behind this is that due to the fact that they were

hidden in the first place, they should be treated as potentially

malicious.

Ultimately a report will be generated listing the findings as

well as information from the Virustotal response. It should

be noted that if the tool is to use targeted statistical

steganalysis attacks on more than one steganography method

then it would increase its effectiveness and also cater to a

larger variety of stego-images created using other transform

domain steganography methods. In the end, this would also

go to prove that the proposed application could be useful in

averting threats that may come in the form of images

embedded with malicious programs.

5. Conclusion

In a nutshell, it can be seen that computer systems of today

are facing danger from file types that would normally not be

expected to carry malicious programs. In order to justify the

need of the proposed application, a proof -of-concept had to

be designed as well so as to emphasize the risks computer

systems are facing. Ultimately, the proposed scanning

application could help thwart most attacks arising from

JPEG images embedded with images. In future, the

application may also be integrated with antivirus software to

make them even more efficient by passing the extracted

programs to the antiviruses for sandboxing. It can also be

integrated with the Taggant system to increase efficiency in

the detection of the packers/obfuscation tools used. In

addition to that, it could even be integrated with the

Gargoyle system to help identify the steganography tool

used to hide images thereby improving the overall speed and

efficiency of the tool as well.

Paper ID: SUB152465 1902

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

References

[1] D. Cid. (2013, July 16). Malware Hidden Inside JPG

EXIF Headers [Online]. Available:

http://blog.sucuri.net/2013/07/malware-hidden-inside-

jpg-exif-headers.html, Accessed: 2014, August 29

[2] Sajedi, H., & Jamzad, M. (2010, March). Selecting a

reliable steganography method. In Multimedia

Computing and Information Technology (MCIT), 2010

International Conference on (pp. 69-72). IEEE

[3] Chamorro, A.G.H.; Miyatake, M.N., "A New

Methodology of Image Steganalysis Including for JPEG

Steganography," Electronics, Robotics and Automotive

Mechanics Conference (CERMA), 2010, pp. 434, 438,

Sept. 28 2010-Oct. 1 2010.

[4] Yan, W., & Ansari, N. (2009, August). Why anti-virus

products slow down your machine?. In Computer

Communications and Networks, 2009. ICCCN 2009.

Proceedings of 18th International Conference on (pp. 1-

6). IEEE.

[5] Fridrich, J., Goljan, M., & Hogea, D. (2003, January).

Steganalysis of JPEG images: Breaking the F5

algorithm. In Information Hiding (pp. 310-323).

Springer Berlin Heidelberg..

[6] Westfeld, A. and Pfitzmann, A. (2000) „Attacks on

Steganographic Systems‟,3rdInternational Workshop.

Lecture Notes in Computer Science, Vol.1768.

Springer-Verlag, Berlin Heidelberg New York

[7] Solanki, K., Sarkar, A. and Manjunath, B.S. (2007)

„YASS: Yet Another Steganographic Scheme that

Resists Blind Steganalysis‟, 9
th

 International Workshop

on Information Hiding, Saint Malo, Brittany, France

[8] Johnson, N.F. and Jajodia, S. (1998) „Steganalysis of

Images Created Using Current Steganography

Software‟, Workshop On Information Hiding

Proceedings, Portland, Oregon, USA.

[9] Provos, N. and Honeyman, P. (2003) „Hide and Seek:

An Introduction to Steganography‟,Proc. IEEE.

[10] Fridrich J., Holub V., Denemark T., (2014, July).

Feature Extractors for

Steganalysis[Online],Availableat:http://dde.binghamton.

edu/download/feature_extractors/, Accessed: 2014

September 12

[11] Lakhotia, A., & Phoha, V. V. (2012). (DEPSCOR FY

09) Obfuscation and Deobfuscation of Intent of

Computer Programs. LOUISIANA UNIV

LAFAYETTE.

[12] Kessler, G. C. (2004). An overview of steganography

for the computer forensics examiner. Forensic Science

Communications, 6(3), 1-27.

[13] Gonsalves A. (2012, November 30). Security Firms

warn of spreading Windows Autorun malware [Online].

Available:

http://www.csoonline.com/article/2132598/malware-

cybercrime/security-firms-warn-of-spreading-windows-

autorun-malware.html Accessed: 2014, September 3

Author Profile

Robert T.R. Shoniwa is student studying towards an MTech in

Information Security and Cyber Forensics at SRM University,

India. He also holds a BTech (with Honors) degree in Computer

Science from Harare Institute of Technology in Zimbabwe.

Geogen George is a researcher in the Cyber Security Research

Centre at SRM University. He also holds an MTech degree in

Information Security and Cyber Forensics from SRM University.

Paper ID: SUB152465 1903

