Fuzzy Subalgebras and Fuzzy p-ideals in TM-Algebras

Kaviyarasu. M

Assistant Professor of Mathematics, Sri Vidya Mandir Arts & Science College, Uthangarai - 636902, Tamil Nadu.

Abstract: In this study, we introduce the concepts of fuzzy subalgebras and fuzzy ideals in TM-algebras and investigate some of its properties. Problem statement: Let X be a TM-algebra, S be a sub algebra of X and I be a p-ideal of X. Let μ and v be fuzzy sets in a TM-algebra X. Approach: Define the upper level subset μ_t of μ and the cartesian product of μ and v from X×X to [0,1] by minimum of μ (x) and v (y) for all elements (x, y) in X×X. Result: We proved any subalgebra of a TM-algebra X can be realized as a level subalgebra of some fuzzy subalgebra of X and μ is a p-ideal of X. Also we proved, the cartesian product of μ and v is a fuzzy p-ideal of X×X. Conclusion: In this article, we have fuzzified the subalgebra and ideal of TM-algebras into fuzzy subalgebras. These concepts can further be generalized.

Keywords: TM-algebra, fuzzy sub algebra, fuzzy ideals, fuzzy p-ideal, homomorphism, Cartesian product, level subset, conditions stated.

1. Introduction

Isaki and Tanaka introduced two classes of abstract algebras BCI-algebras and BCK-algebras. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebra. Hu and Li introduced a wide class of abstract algebra namely BCH- algebras. Zadeh (1965), introduced the notion of fuzzy sets in 1965. This concept has been applied to many mathematical branches. Xi applied this concept to BCK-algebra. Dudek and Jun (2001) fuzzified the ideals in BCC- algebras. Jun (2009) contributed a lot to develop the theory of fuzzy sets.

I introduced a new notion called TM-algebra, which is a generalization of Q/ BCK/ BCI/ BCH-algebra and investigated some properties. In this study, we introduce the concepts of fuzzy subalgebras and fuzzy p-ideals in TM-algebra and investigate some of their properties.

2. Materials Method

Certain fundamental definitions that will be used in the sequel are described.

Preliminaries:

Definition 1: A BCK-algebra is an algebra (X, *, 0) of type (2, 0) satisfying the following conditions:

• $(x^* y) * (x^* z) \le z^* y$ • $x^* (x^* y) \le y$ • $x \le x$, • $x \le y$ and $y \le x$ imply x = y, • $0 \le x$ implies x = 0, where $x \le y$ is defined by • $x^* y = 0$ for all $x, y, z \in X$.

Definition 2: Let I be a non- empty subset of a BCK- algebra X. Then I is called a BCK-ideal of X if: • $0 \in I$.

• $x * y \in I$ and $y \in I$ imply $x \in I$, for all $x, y \in X$

Definition 3: A TM-algebra (X, *, 0) is a non-empty set X with a constant "0" and a binary operation "* " satisfying the following axioms:

• x * 0 = x

• $(x^* y) * (x * z) = z * y$, for any x, y, $z \in X$

In X we can define a binary relation \leq by $x \leq$ y if and only if x * y = 0.

Definition 4: Let S be a non-empty subset of a TM- algebra X. Then S is called a subalgebra of X if $x * y \in S$, for all x, $y \in X$.

Definition 5: Let (X, *, 0) be a TM-algebra. A non- empty subset I of X is called an ideal of X if it satisfies • $0 \in 1$

• $x * y \in I$ and $y \in I$ imply $x \in I$, for all $x, y \in X$.

Definition 6: An ideal A of a TM-algebra X is said to be closed if $0 * x \in A$ for all $x \in A$.

Definition 7: Let (X, *, 0) be a TM-algebra. A non- empty sub set I of X is called a p- ideal of X if it satisfies, • $0 \in I$

• $(x^*z)^*(y^*z) \in I$ and $y \in I$ imply $x \in I$, $y \in I$, for all $x, y, z \in X$.

If we put z=0,then it follow that I is an ideal. Thus every p-ideal is an ideal.

3. Fuzzy Sub Algebras

Definition 8: Let X be a non-empty set. A mapping $\mu : x \rightarrow [0,1]$. μ is called a fuzzy set in X. The complement of μ , denoted by $\overline{\mu}(x) = 1 - \mu(x)$, for all $x \in X$.

Definition 10: Let μ be a fuzzy set of a set X. For a fixed

t \in [0,1], the set $\mu_t = \{ x \in X / \mu (x) \ge t \}$ is called an upper level of μ .

Fuzzy p-ideals in TM-algebras:

Definition 11: A fuzzy subset μ in a TM-algebra X is called a fuzzy ideal of X, if:

• (i) μ (0) $\geq \mu$ (x)

• (ii) μ (x) \ge min{ μ (x * y), μ (y) }for all x, y, z \in X

Definition 12: A fuzzy subset μ in a TM-algebra X is called a fuzzy p-ideal of X, if:

 $\begin{array}{l} \bullet \ \mu \ (\ 0 \) \ \geq \ \mu \ (\ x \) \\ \bullet \ \mu \ (\ x \) \ \geq \ \min \{ \ \mu (\ (\ x \ * z \) \ * \ (y \ z)) \ , \ \mu \ (y) \ \}, \\ for \ all \ x, \ y, \ z \ \in X \end{array}$

4. Results

Lemma 13: If μ is a fuzzy subalgebra of a TM-algebra X, then μ (0) $\geq \mu$ (x) for any x \in X.

Proof: Since x * x = 0 for any $x \in X$, then: $\mu(0) = \mu(x^*x) \ge \min\{\mu(x), \mu(x)\} = \mu(x)$. This completes the proof.

Theorem 14: A fuzzy set μ of a TM-algebra X is a fuzzy subalgebra if and only if for every $t \in [0,1]$, μ_t is either empty or a subalgebra of X.

 $\begin{array}{l} \textbf{Proof:} \mbox{ Assume that } \mu \mbox{ is a fuzzy subalgebra of } X \\ \mbox{and } \mu_t \neq \phi. \mbox{ Then for any } x \ , y \in \mu_t, \\ \mbox{we have: } \mu \ (x^*y) \geq \min\{ \ \mu \ (x) \ , \ \mu \ (y) \ \} \geq t. \\ \mbox{Therefore } x^*y \in \mu_t. \\ \mbox{Hence } \mu_t \mbox{ is a subalgebra of } X. \\ \mbox{Conversely, } \mu_t \mbox{ is a subalgebra of } X. \\ \mbox{Let } x, \ y \in X. \ Take \ t = \min\{ \ \mu \ (x) \ , \ \mu \ (y) \ \}. \\ \mbox{Then by assumption } \mu_t \mbox{ is a sub algebra of } X \ implies: \\ x^*y \in \mu_t. \\ \mbox{Therefore } \mu \ (x^*y) \geq t = \min\{ \mu \ (x) \ , \mu \ (y) \ \}. \\ \mbox{Hence } \mu \ \mbox{ is a subalgebra of } X. \\ \mbox{Theorem 15: Any subalgebra of a TM-algebra } X \ \mbox{ can be} \end{array}$

Theorem 15: Any subalgebra of a TM-algebra X can be realized as a level subalgebra of some fuzzy subalgebra of X. **Proof:** Let μ be a subalgebra of a given TM-algebra X and let μ be a fuzzy set in X defined by:

 $\mu(x) = \begin{cases} t, if & x \in A \\ 0, if & x \in A \end{cases}$

where, t (0,1) \in is fixed. It is clear that $\mu_t = A$.

Now we will prove that, such defined μ is a fuzzy subalgebra of X.

Let x, y \in X. If x, y \in A then also x*y \in A. Hence μ (x) = μ (y) = μ (x*y) = t and μ (x*y) \geq min { μ (x), μ (y) }. If x, y \notin A then μ (x) = μ (y) = 0 and in the consequence μ (x*y) \geq min { μ (x), μ (y) } = 0. If at most one of x, y belongs to A, then at least one of μ (x) and μ (y) is equal to 0. Therefore, min { μ (x), μ (y) } = 0, so that: μ (x*y) \geq 0, which completes the proof **Theorem 16:** Two level subalgebras μ s, μ t (s < t) of a fuzzy subalgebra are equal if and only if there is no x \in X. such that $s \le \mu(x) < t$. **Proof:** Let $\mu_s = \mu_t$ for some s < t. If there exits $x \in X$ such that $s \le \mu(x) < t$, then μ_t is a proper subset of μ_s , which is a contradiction. Conversely, assume that there is no $x \in X$, such that $s \le \mu(x) < t$. If $x \in \mu_s$, then $\mu(x) \ge s$ and $\mu(x) \ge t$, since $\mu(x)$ does not lie between s and t. Thus $\mu_t \in x$, which gives $\mu_s \subseteq \mu_t$. Also ts $\mu_t \subseteq \mu_s$. Therefore $\mu_s = \mu_t$

Theorem 17: Every fuzzy p-ideal μ of a TM-algebra X is order reversing, that is if $x \le y$ then: $\mu(x) \ge \mu(y)$ for all x, y \in X. **Proof:** Let x, y \in X such that $x \le -y$

Therefore x * y = 0. Put z = 0, Now, $\mu(x) = \mu(x*0)$ $\geq \min \{ \mu((x*0)*(y*z)), \mu(y) \}$ $= \min \{ \mu((x*0)*(y*z)), \mu(y) \}$ $= \min \{ \mu(x*y), \mu(y) \}$ $, \mu(x) = \mu(y).$

Theorem 18: A fuzzy set μ in a TM-algebra X is a fuzzy pideal if and only if it is a fuzzy ideal of X. **Proof:** Let μ be a fuzzy p-ideal of X. Then (i) μ (0) $\geq \mu$ (x) and (ii) μ (x) $\geq \min\{\mu((x * z) * (y * z)), \mu(y)\}$ for all x, y, z \in X. putting z = 0 in (ii) we have, μ (x) $\geq \min\{\mu(x*y), \mu(y)\}$. Hence μ is a fuzzy ideal of X. Conversely, μ is a fuzzy ideal of X. Then: $\mu(x) \geq \min\{\mu((x*z)*(y*z)), \mu(y)\}$ $\mu(x) = \min\{\mu((x*z)*(y*z)), \mu(y)\}$ which proves the result.

Theorem 19: Let μ be a fuzzy set in a BCK-algebra X. Then μ is a fuzzy p-ideal if and only if μ is a fuzzy BCK-ideal. **Proof:** Since every BCK-algebra is a TM-algebra, every fuzzy p-ideal is a fuzzy ideal of a TM-algebra and hence a fuzzy BCK-ideal.

Conversely, assume that μ be a BCK-ideal of X. Then: $\mu(x) \ge \min \{ \mu((x*z)*(y*z)), \mu(y) \}$ $= \min \{ \mu((x*z)*(y*z)), \mu(y) \}.$ Hence μ is a fuzzy p-ideal of X.

Theorem 20: Let μ be a fuzzy set in a TM-algebra X and let $t \in Im (\mu)$. Then μ is a fuzzy p-ideal of X if and only if the level subset: $\mu_t = \{ x \in X / \mu (x) \ge t \}$ is a p-ideal of X, which is called a level p-ideal of μ . **Proof:** Assume that μ is a fuzzy p-ideal of X. Clearly $0 \in \mu_t$ Let $((x * z) * (y * z)) \in \mu_t$ and $y \in \mu_{t-1}$ Then μ (($x^* z$) * (y * z)) $\geq t$ and μ (y) $\geq t$. Now μ (x) \ge min { μ ((x * z) * (y * z)), μ (y)} $\geq \{t, t\} = t$ Hence μ_t is p-ideal of X. Conversely, let μ_t is p-ideal of X for any $t \in [0,1]$. Suppose assume that there exist some $x_0 \in X$ such that μ (0) < μ (x_0); Take S= $\frac{1}{2}$ [μ (0) + μ (x₀)] \Rightarrow s < μ (x₀) and 0 $\leq \mu$ (0) s ≤ 1

Volume 4 Issue 3, March 2015

 $\begin{array}{l} x_{0} \in \mu_{t} \mbox{ and } \mu \notin \mu_{t} \mbox{ a contradiction,} \\ \mbox{since } \mu_{s} \mbox{ is a p-ideal of } X. \\ \mbox{Therefore, } \mu(0) \geq \mu(x) \mbox{ for all } x \in X. \\ \mbox{If possible, assume that } x_{0}, y_{0} \mbox{ } z_{0} \in X \\ \mbox{such that } \mu(x_{0}) \geq \min\{ \mu((x_{0}*z_{0})*(y_{0}*z_{0})), \mu(y_{0}) \}: \\ \mbox{Take} \\ \mbox{s} = \frac{1}{2} \left[\mu(x_{0}) + \mu((x_{0}*z_{0})*(y_{0}*z_{0})), \mu(y_{0}) \right] \\ \mbox{ } \Rightarrow s > \mu(x_{0}) \mbox{ and: } s < \min\{ \mu((x_{0}*z_{0})*(y_{0}*z_{0})), \mu(y_{0}) \} \\ \mbox{ } \Rightarrow s > \mu(x_{0}), s < \mu((x_{0}*z_{0})*(y_{0}*z_{0})) \mbox{ and } s < \mu(y_{0}) \\ \mbox{ } x_{0} \notin \mu_{s} \Rightarrow, \mbox{ a contradiction, since } \mu_{s} \mbox{ is a p-ideal of } X. \\ \mbox{Therefore, } \mu(x) \geq \min\{ \mu((x*z)*(y*z)), \mu(y) \} \\ \mbox{ for any } x, y, z \in X \ . \end{array}$

5. Cartesian product of fuzzy p-ideals of TM-algebras:

Definition 21: Let μ and v be the fuzzy sets in a set X. The Cartesian product $\mu \times v: X \times X \rightarrow [0,1]$ is defined by:

 $(\mu \times v) (x, y) = \min \{ \mu (x), v (y) \}$ for all x, y $\in X$

Theorem 22: If μ and v are fuzzy p-ideals in a TM- algebra X, then $\mu \times v$ is a fuzzy p-ideal in X×X.

Proof: For any $(x, y) \in X \times X$, we have: $(\mu \times v) (0, 0) = \min \{ \mu (0), v (0) \}$ $\geq \min \{ \mu (x), v (y) \}$ $= (\mu \times v) (x, y).$ Let $(x_1, x_2), (y_1, y_2)$ and $(z_1, z_2) \in X \times X.$ $(\mu \times v) (x_1, x_2) = (\mu \times v) (x_1^* x_2)$ $= \min \{ \mu (x_1), v (x_2) \}$

- $\geq \min\{\min\{\mu((x_1^*z_1)^*(y_1^*z_1)), \mu(y_1)\}, \min\{v((x_2^*z_2)^*(y_2^*z_2)), v(y_2)\}\}$
- $= \min\{\min\{\mu((x_1^*z_1)^*(y_1^*z_1)), v((x_2^*z_2)^*(y_2^*z_2)), \\ \min\{\mu(y_1), v(y_2)\}\}$
- $= \min\{(\mu \times v)((x_1^*z_1)^*(y_{1^*}z_1)), v((x_2^*z_2)^*(y_{2^*}z_2)), \\ (\mu \times v)(y_1, y_2) \}$ = min{($\mu \times v$)(($x_1^*z_1$)*($y_1^*z_1$)), v(($x_2^*z_2$)*($y_2^*z_2$)),

 $(\mu \times v) (y_1, y_2)$ } **Theorem 23:** Let μ and v be fuzzy sets in a TM-algebra X such that $\mu \times v$ is a Hence $\mu \times v$ is a fuzzy p-ideal of a TM-algebra in X×X. fuzzy p-ideal of X×X. Then:

- (i) Either μ (0) $\geq \mu$ (x) or v (0) \geq v (x) for all x \in X
- (ii) If μ (0) $\geq \mu$ (x) for all x \in X, then either v (0) $\geq \mu$ (x) or v (0) \geq v (x)

• (iii) If v (0) \ge v (x) for all x \in X, then either μ (0) \ge μ (x) or μ (0) \ge v (x)

 \bullet (iv) Either μ or v is a fuzzy p-ideal of X.

Proof: $\mu \times v$ is a fuzzy p-ideal of X×X. Therefore $(\mu \times v) (0, 0) \ge (\mu \times v) (x, y)$ for all $(x, y) \in X \times X$ And

 $\begin{array}{l} (\mu \times v) \ (x_1, \ x_2) \ \geq \min \ \{(\mu \ \times v) \ ((x_1, \ x_2) \ \ast(z_1, \ z_2)) \ \ast((y_1, \ y_2) \ \ast(z_1, z_2)), \ (\mu \times v) \ (y_1, \ y_2)\} \ for \ all \ (x_1, \ x_2), \ (y_1, \ y_2) \ and \ (z_1, z_2) \ \in X \times X. \end{array}$

Suppose that μ (0) < μ (x) and v (0) < v (y) for some x,y \in X. Then: ($\mu \times v$) (x,y) = min{ μ (x), v (y) } > min{ μ (0), v (0)} = ($\mu \times v$) (0,0).

a contradiction.

Therefore either $\mu(0) \ge \mu(x)$ or $v(0) \ge v(x)$ for all $x \in X$.

Assume that there exist x, $y \in X$ such that: $v(0) < \mu(x)$ and v(0) < v(y). Then: $(\mu \times v) (0, 0) = \min\{\mu(0), v(0)\}$ = v (0) and hence $(\mu \times v) (x, y) = \min\{ \mu(x), v(y) > v(0) \}$ $= (\mu \times v) (0,0),$ a contradiction. Hence if $\mu(0) \ge \mu(x)$ for all $x \in X$, then either: $v(0) \ge \mu(x)$ or $v(0) \ge v(x)$ Similarly we can prove that if $v(0) \ge v(x)$ for all $x \in X$, then either $\mu(0) \ge \mu(x)$ or $\mu(0) \ge v(x)$. First we prove that v is a fuzzy p-ideal of X. Since ,by (i), either $\mu(0) \ge \mu(x)$ or v(0) \geq v (x) for all x \in X . Assume that v (0) \geq v (x) for all x \in X . It follows from (iii) that either μ (0) $\geq \mu$ (x) or μ (0) $\geq v$ $(x).If\mu(0) \ge v(x)$ for any $x \in X$, then: $v(x) = \min\{ \mu(0), v(x) \}$ $= (\mu \times v) (0, x).$ $v(x) = \min\{\mu(0), v(x)\}$ $= (\mu \times v) (0, x)$ $\geq \min \{ (\mu \times v) ((0, x)^* (0, z))^* ((0^*y)^* (0, z)) \}$ $(\mu \times v) (0, y)$ = min { $(\mu \times v)(((0*0),(x*z))*((0*0),(y*z))),$ $(\mu \times v) (0, y) \}$ $= \min\{ (\mu \times v)(((0*0)*(0*0)), ((x*z)*(v*z))) ,$ $(\mu \times v) (0, y) \}$ $= \min \{ (\mu \times v) (0, ((x^*z)^*(y^*z))), (\mu \times v)(0, y) \}$ $V(x) = \min \{v ((x^*z)^*(y^*z)), v(y) .$ Hence v is a fuzzy p-ideal of X. Now we will prove that µis a fuzzy p-ideal of X. Let $\mu(0) \ge \mu(x)$. By (ii) either $v(0) \ge \mu(x)$ or $v(0) \ge v(x)$. Assume that $v(0) \ge \mu(x)$, Then: μ (x) = min { μ (x), v (0) } = (μ ×v) (x,0). μ (x) = min { μ (x), v (0) } $= (\mu \times v) (x, 0)$ $\geq \min\{(\mu \times v)(((x,0)^*(z,0))^*((v^*0)^*(z,0))), (\mu \times v) (v, 0)\}$ $= \min\{(\mu \times v)(((x^*z),(0^*0))^*((y^*z),(0^*0))), (\mu \times v) (y, 0)\}$ $= \min\{(\mu \times v)(((x^*z)^*(y^*z)), ((0^*0)^*(0^*0))), (\mu \times v)(y, 0)\}$ $= \min \{ \mu ((x^*z)^*(y^*z)), \mu (y) \}$

Hence μ is a fuzzy p-ideal of X.

6. Homomorphism of TM-algebras:

Definition 24: Let X and Y be TM-algebras. A mapping $f: X \rightarrow Y$ is said to be a homomorphism if it satisfies: f(x*y) = f(x)*f(y), for all $x, y \in X$.

Definition 25: Let f: X x X \rightarrow be an endomorphism and μ a fuzzy set in X. We define a new fuzzy set in X by μ_f in X by $\mu_f(x) = \mu(f(x))$, for all x in X.

Theorem 26: Let f be an endomorphism of a TM- algebra X. If μ is a fuzzy p-ideal of X, then so is μ_f .

 $\begin{array}{l} \text{Proof:} \ \mu_f\left(x\right) = \mu\left(\;f\left(\;x\right)\;\right) \leq \mu\left(0\right) \\ \text{Let } x, \, y, \, z \; \in & X. \\ \text{Then:} \ \mu_f\left(x\right) = \mu\left(\;f\left(x\right)\;\right) \\ & \geq \min\left\{\mu((f\left(x)^*f(z)\right)^*(f(y)^*f\left(z)\right))\;, \mu(f\left(y\right))\;\right\} \\ & = \min\left\{\;\mu\left(\;(f(x^*z)\;)^*f\left(y^*z\right)\;\right)\;, \;\mu\left(\;f\left(y\right)\;\right)\;\right\} \\ & = \min\left\{\;\mu\left(\;f\left(\;(x^*z)^*\left(y^*z\right)\;\right)\;, \;\mu\left(\;f\left(y\right)\;\right)\;\right\} \\ \end{array}$

Volume 4 Issue 3, March 2015

 $= \min \{ \mu_f ((x^*z)^*(y^*z)), \mu_f (y)) \}.$ Hence μ_f is a fuzzy p-ideal of X.

7. Discussion

With minimum conditions in TM-algebra it satisfy these results. In other algebra Like BCK/BCI/BCH/BCC the number of conditions are more.

8. Conclusion

In this article, we have fuzzified the subalgebra and ideal of TM-algebras into fuzzy subalgebra and fuzzy ideal of TM-algebras. It has been observed that the TM-algebra satisfy the various conditions stated in the BCC/ BCK algebras and can be considered as the generalization of all these algebras. These concepts can further be generalized.

References

- Dudek, W.A. and Y.B. Jun, 2001. "Fuzzification of ideals in BCC-algebras," Glasnik Matematicki, 36: 127-138. Imai, Y.and K. Isaeki, 1966.
- [2] "On axiom systems of propositional calculi", XIV. Proc. Jap. Acad., 42: 19-22. DOI: 10.3792/pja/1195522169 Jun, Y.B., 2009.
- [3] "Generalization of (∈, ∈ vq) –fuzzy subalgebras in BCk /BCI-algebras". Comput.Math. Appl., 58: 1383-1390.
 DOI: 10.1016/j.camwa.2009.07.043 Megalai, K and A.Tamilarasi, 2010.
- [4] "TM-algebra An Introduction". Int. J. Comput. Applied. Special Issue Computer Aided soft Computing Techniques for imaging and Biomedical Application. DOI: 10.5120/996-2Zadeh, L.A., 1965. Fuzzy sets. Inform. Control, 8: 338-353. DOI: 10.1016/S0019-9958(65)90241-X
- [5] "Fuzzy Subalgebras and Fuzzy T- ideals in TMalgebra", Megalai . K and A.Tamilarasi , Journal of Mathematics and Statistics 7(2), 2011, 107-111.
- [6] "Anti Q fuzzy group and its lower level subgroups", Muthuraj .R , P.M.Sitharselvam , M.S.Muthuraman , , IJCA, 3 (2010) ,16-20.
- [7] "Anti Q- Fuzzy BG-ideals in BG-algebra", Muthuraj .R ,M.Sridharan, P.M. Sitharselvam, M.S.Muthuraman , , IJCA, 4 , (2010), 27-31.
- [8] "On Q-algebras.Neggers". J , S.S.Ahn and H.S.Kim , , IJMMS 27 (2001) , 749-757.
- [9] "On B-algebras", Neggers. J and H.S.Kim , math,vensik,54 (2002), 21-29.
- [10] "On d-algebras", Neggers. J and H.S. Kim, , Math, slovaa, 49 (1999), 19-26.
- $[11]\ensuremath{\,^\circ}\xspace{Fuzzy}$ sets , Inform.control" , Zadeh.L .A. ,8 (1965) , 338 353.
- [12] "On intuitionistic fuzzy H-ideals in BCK-algebras", B. Satyanarayana, U.B. Madhavi and R. Durga Prasad, International Journal of Algebra, 4(15) (2010),743-749.
- [13] "On foldness of intuitionistic fuzzy H-ideals in BCKalgebras", B. Satyanarayana, U.B. Madhavi and R.D. PrasadInternational Mathematical Form, 5(45) (2010), 2205-2211.

[14] "On intuitionistic fuzzy ideals in BCKalgebras", B. Satyanarayana and R. Durga Prasad, International Journal of Mathematical Sciences and EngineeringApplications, 5(1) (2011), (In Press).