
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Assertion-Based Formal Verification of CPU-Cache

Crossbar of OpenSPARC T1 Processor

P. Vishnu Vardhan Reddy
1
, Rajendra M. Patrikar

2

1Gayatri Vidya Parishad College of Engineering,

Visakhapatnam 530048, India

vishnunbkr@gmail.com

2Visvesvaraya National Institute of Technology, Nagpur,

Nagpur 440010, India

rmpatrikar@ece.vnit.ac.in

Abstract: Functional verification of complex designs, such as multi-core processors, is a challenging task in the entire verification

cycle, because bugs which are not uncovered during this phase will carry on to the later design stages. The cost of fixing bugs is very

high at later stages as compared to fixing them at the RTL implementation phase. Conventional verification methods like coverage-

driven simulation techniques may not be able to uncover all the bugs due to their inability to exercise corner-case scenarios in a design.

Formal methods like theorem proving, assertion-based verification are exhaustive and detect all corner-case bugs. This paper proposes

an assertion-based formal approach for the verification of the CPU-Cache Crossbar module of the SPARC T1 processor, whose

behavior is characterized by complex request patterns originating from the multiple cores to access shared resources such as the Level 2

cache memory banks, floating-point unit, and I/O Bridge – ideal candidates for an assertion based formal verification approach.

Keywords: Arbiter, assertion-based verification, formal verification, multi-core processor.

1. Introduction

Functional verification is the task of verifying whether

specifications are implemented correctly or not. As the

design complexities are increasing, the task of verification

poses new challenges to the verification engineers. Multi-

core microprocessor designs having large blocks of parallel

processing logic that share common resources pose unique

challenges for functional verification. Besides parallel

processing logic, these designs have more number of arbiters

that ensures packet transfers among different sources and

destinations. Validating multiple levels of arbitration is a

difficult task. Multi-core processors have design blocks of

replicated logic which reduces design effort, but increases

verification complexity due to inherent asymmetry between

threads [1].

Verification of this kind of complex designs takes majority of

the resources (60-70%) — engineers, time, and money [2].

Even with such a significant effort, functional bugs are the

main causes of silicon re-spin [3]. Once the specifications are

implemented at Register Transfer Level (RTL) functional

verification should guarantee that the design has no bugs.

If there are any bugs present in the RTL code the entire

verification process needs to iterated, after isolating the bug

and removing it from the design. After RTL implementation,

design will undergo logic synthesis and backend stages

involving physical layout synthesis where fixing any design

functional bugs can be very expensive and time consuming.

Hence, detection of all design implementation bugs and

corner-case bugs exhaustively during functional verification

is imperative. One interesting difference between simulation-

based and Formal-based methods is, the former potentially

demonstrates the presence of a bug whereas the later ensures

the absence of a bug also [4].

The CPU-Cache Crossbar (CCX) module of the SPARC T1

processor which has more number of arbiters, manages

complex request patterns from all cores to shared resources

such as Level 2 cache (L2 cache) memory banks, floating-

point unit (FPU), and I/O Bridge (IOB) and vice versa.

Checking for fair arbitration for complex request patterns

among multiple arbiters is a daunting task under all possible

scenarios by simulation-based methods. Thus, assertion-

based formal method is proposed for verification of CPU-

Cache Crossbar (CCX).

This paper is organized as follows. Section 2 presents a brief

introduction about an assertion-based verification. Section 3

presents SPARC T1 processor details and its various

interfaces along with brief description of CCX. Section 4

presents Processor Cache Crossbar (PCX) arbiter. Section 5

presents a discussion on proposed verification methodology

on CCX module, while section 6 concludes the discussion on

proposed approach.

2. Assertion-Based Verification

In Assertion-based Verification (ABV) the design intent is

captured by properties specified in one of the standard

assertion languages like Property Specification Language

(PSL) [5], SystemVerilog Assertions (SVA) [6]. Property

specification (i.e., assertions, constraints, and functional

coverage) is fundamental to assertion-based verification.

Informally a property specification can be viewed as a

composition of three distinct layers [7].

 The Boolean layer, which is comprised of Boolean
expressions (e.g., Verilog or VHDL).

 The temporal layer, which describes the relationship of
Boolean expressions over time.

Paper ID: SUB152403 1803

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 The verification layer, which describes how to use a
property during verification.

Assertions developed from RTL specifications can be used

either in simulation or formal verification. The simulation-

based approach is called Dynamic ABV, since the properties

are checked over simulation run — it captures only those

behaviors that are encountered by simulation. In contrast

assertion-based formal verification performs exhaustive

checking of the design, i.e. for all possible behaviors under

all possible input combinations [8].

3. SPARC T1 Processor

The OpenSPARC T1 processor consists of eight SPARC
®

processor cores and each core has full hardware support for

four threads. These eight cores are connected to an on-chip

L2 cache banks through a crossbar as shown in Figure 1 [9].

The four on-chip Dynamic random-access memory (DRAM)

controllers directly interface to the Double data rate

synchronous DRAM (DDR2 SDRAM). Further J-Bus

controller interfaces between I/O subsystem and processor.

All the eight cores, four L2 cache banks, IOB, and FPU are

interfaced through CCX. CCX manages packet transfers

among all these and its features are

 Each source can queues up to two packets per destination.

 Three stage pipeline— request, arbitrate, and transmit.

 Oldest request getting high priority.

CCX consists of two main blocks — Processor-Cache

Crossbar (PCX) and Cache-Processor Crossbar (CPX) as

shown in Figure 2 [9].

3.1 Processor-Cache Crossbar

PCX accepts packets from any of the eight cores and delivers

to any one of four L2 cache banks, IOB, or FPU. As L2

cache banks and IOB can process only limited number of

packets, destination sends a stall signal to PCX after its

maximum limit, but FPU cannot stall PCX. PCX contains

five arbiters (Figure 2) corresponding to six destinations.

3.2 Cache-Processor Crossbar

CPX accepts packets from any of the four L2 cache banks,

IOB, and FPU and delivers to any of the eight cores. Since

each core has an efficient mechanism to drain the buffer that

stores packets, CPX does not receive any stall signal. CPX

contains eight arbiters (Figure 2) corresponding to eight

cores.

4. PCX Arbiter

4.1 PCX Arbiter Control Flow Logic

The PCX arbiter has eight FIFO queues for control flow

logic which are sixteen entries deep as shown in Figure 3 [9].

When the arbiter corresponds to the particular destination

receives a packet from one only one source at particular

clock cycle then it is processed in same cycle before it

receives a packet in next cycle when there is no stall from

destination. When multiple sources send a packet to one

destination in same cycle, the arbiter will decide the priority

depends on direction bit.

Figure 1: OpenSPARC T1 processor block diagram.

Figure 2: PCX and CPX internals block diagram.

Figure 3: PCX Arbiter control flow block diagram.

If the direction is high the priority is from CPU0 to CPU7

otherwise it is from CPU7 to CPU0. Arbiter will generate 8-

bit signal which is one hot to data FIFO multiplexers (Figure

4) and it also sends acknowledgement to source and data

ready to the destination.

Paper ID: SUB152403 1804

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

4.2 PCX Arbiter Data Flow Logic

Similar to the control flow it has eight FIFO queues for data

flow logic which are two entries deep as shown in Figure 4

[9]. The PCX receives data packets of 124-bits wide and

delivers to the destination without any modifications.

The CPX arbiters are similar to PCX arbiters except that

packets to CPX are 145-bits wide and it does not receive any

stall signal

Figure 4: PCX Arbiter data flow block diagram.

5. Verification Methodology and Discussions

The CPU-Cache Crossbar (CCX) is verified using Incisive
®

Formal Verifier (IFV) tool from Cadence [10]. SPARC T1

processor Verilog RTL code is available as an open-source

[9]. CCX RTL consists of approximately 31,290 D flip-

flop/latches. CCX design hierarchy summary by IFV tool is

shown in Table 1. Cadence IFV supports most of the industry

standard assertion languages for specifying properties. In this

paper PSL [5] is used for properties specification.

Specification of the environment in which the design is

embedded called constraints, is the key to property

verification. In IFV we can specify these constraints as PSL

properties.

Table 1: CCX Design Hierarchy Summary

Parameter Instances Unique

Modules 3277 97

Registers 2939 34

Scalar wires 40642 -

Expanded wires 109175 2591

Always blocks 2763 10

Continuous assignments 7640 788

Pseudo assignments 4067 266

In the following sub-sections we describe a few properties

that are specified to verify requests originating from the eight

processor cores (as Masters) for access to one of the four L2

cache banks, the FPU port or the IOB port (as Slaves),

mediated through the PCX block. Similar kinds of properties

are specified for transactions originating from the slaves to

the masters mediated through the CPX block.

The following are the few kinds of properties that are verified

on CCX using IFV. The status or result of property

specifications (i.e., pass, fail, or explored) are discussed

along with property description.

5.1 PCX Verification

5.1.1 One CPU to anyone of the four L2 cache banks

a) Without stall from any destination

For example, CPU0 sends a request to write a data packet to

L2 Cache bank0 through ARB0, ARB0 ensures that CPU0

should be acknowledged with a grant, and a data ready,

packet transfer to L2 cache bank0 when there is no stall

signal from L2 cache bank0. These kinds of properties are

proved by putting constraints on other CPU requests and stall

signals.

b) With stall from destination:

For example, CPU7 sends a request to write a data packet to

L2 Cache bank3 through ARB3, ARB3 ensures that CPU7

should not be acknowledged with grant.

5.1.2 Two or More CPUs to anyone of the four L2

cache banks

For example, CPU0 and CPU1 concurrently send a request to

write a data packet to L2 cache bank0 through ARB0, ARB0

arbitrates multiple requests based on status of direction

signal. CPU0 should get grant first if direction is high

otherwise CPU1 is given the grant. Since the direction signal

toggles in every clock cycle, setting up an environmental

constraint to check for the correctness of the functional

behavior for a given set of concurrent requests, for a given

direction as set by the value of the direction bit can be

extremely difficult. This leads IFV to fail any property very

easily by throwing up counter examples when the verification

has to be carried out exhaustively. For exhaustiveness, all

possible complex request patterns need to be specified in the

antecedent part of a PSL property, while the behavior

consistent with each different request patterns needs to be

captured over multiple clock cycles in the consequent part of

the property for the behavior to be validated.

One way to overcome this is by capturing the behavior of the

PCX arbitration logic in the PSL modeling layer and

checking, behavior of the RTL implementation of the PCX

arbitration logic against it over all clocks cycles against all

possible concurrent requests originating from multiple CPUs.

This is tantamount to replicating the PCX arbitration logic

and incurs the cost of additional flip-flops or register

elements needed in the modeling layer version of the PCX

arbitration logic. A much simpler approach is to write a cover

for the expected behavior for a pre-defined input request

pattern. However, this approach does not guarantee the

correctness over all possible input behaviors.

A manual analysis of the counter example generated by IFV

can also reveal interesting details of the possible correctness

of behavior for a particular input request pattern. A counter

example could point to a genuine bug in the design or an

Paper ID: SUB152403 1805

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

error in the specification and/or an error in setting up

environmental constraints.

If the property specification is correct then we can directly go

to original source of bug and fix it. The counter example

based analysis even if done manually, can be much faster in

pin-pointing the source of bug in either the design, or in the

specification, as compared to inferring the same from an

analysis of the simulation based traces.

5.1.3 Two or more CPUs to different destinations at

same time

CPU7 and CPU1 send a request, data packet to L2 cache0

and FPU through ARB0 and ARB4 respectively, then ARB0

ensures that CPU7 should be acknowledged with grant, and

data ready, packet transfer to L2 cache0 when there is no stall

signal from L2 cache0. Whereas ARB4 ensures that CPU1

should be acknowledged with grant, and data ready, packet

transfer to FPU.

5.1.4 Checking of mutually exclusive grants

If two or more CPUs send request to same destination (e.g.,

L2 cache3) at same time, then arbiter (ARB3) should not

generate two grants in the one cycle. These kinds of

properties are specified by using never in temporal layer of

PSL structure.

5.1.5 Checking for correct grant sequence

When all eight CPUs send request at same time, the correct

grant sequence is verified by visual inspection of two

counter-examples. For the property specified CPU0 to CPU7

as grant sequence, the counter example showed CPU7 to

CPU0 as grant sequence as one counter example. The second

counter example showed vice versa.

5.2 CPX Verification

5.2.1 Any L2 cache bank to any CPU

For example, L2 cache bank0 send request and data packet to

CPU3 through ARB3, ARB3 ensures that L2 cache bank0

should be acknowledged with the grant, and a data ready,

packet transfer to CPU3.

5.2.2 FPU/IOB to any CPU

For example, FPU/IOB send request and data packet to

CPU1 through ARB1, ARB1 ensures that data ready, packet

transfer to CPU3 and grant to IOB, however FPU does not

receive grant.

The other properties like checking for mutually exclusive

grants and others are verified in similar to PCX. Besides all

these properties we have verified few corner cases like

arbiter generating grants when no requests at all and when

stall signal is constrained arbiter generating grants in future.

Table2 gives a snapshot of formal verification results by IFV

for PCX and CPX blocks. The explored properties are due to

limitations of tool, which is usually because of deep FIFOs.

Table 2: Assertion Summary

Block Properties Proved Explored

PCX 624 484 140

CPX 674 554 120

6. Conclusion

CCX module of SPARC T1 processor is verified

exhaustively by using an assertion-based formal approach.

The advantage of proposed method is verification engineer

starts developing properties parallel to the RTL design

engineer, thereby reducing verification time, and hence

overall time to market. But, these formal-based methods are

not mature to handle end to end formal verification because

of state explosion problem. Some solutions to state explosion

problems are design abstractions and assume-guarantee

verification. In practice formal methods does exhaustive

checking for specified properties over all possible behaviors

of implementation, but does not guarantee that the specified

properties are sufficient for full design intent coverage.

However, these formal methods are ideal for control logic

dominant designs.

References

[1] B. Turumella, and M. Sharma, ―Assertion-based

verification of a 32 thread SPARC™ CMT

microprocessor,‖ In Proc. 45th ACM/IEEE, DAC Jun.

2008, pp. 256-261.

[2] A. Lungu, and Daniel J. Sorin, ―Verification-Aware

Microprocessor Design,‖ In Proc. 16th International

Conference on Parallel Architecture and Compilation

Techniques, IEEE Computer Society, Sept. 2007, pp.

83-93.

[3] Alok sanghavi, ―What is formal verification?‖ [Online].

Available:http://www.eetasia.com/STATIC/PDF/20100

5/EEOL_2010MAY21_EDA_TA_01.pdf

[4] Douglas L. Perry, and H. Foster, ―Introduction to formal

techniques‖ in Applied Formal Verification, McGraw-

Hill, Inc., 2005, pp. 39-65.

[5] IEEE Standard for Property Specification Language

(PSL), IEEE Std 1850-2010 (Revision of IEEE

Std1850-2005) – Redline, pp. 1-188, Apr. 2010.

[6] IEEE Standard for SystemVerilog, ―Unified Hardware

Design, Specification, and Verification Language‖,

IEEE Std 1800-2009 (Revision of IEEE Std1800-2005)

– Redline, pp. 1-1346, Dec. 2009.

[7] R. Drechsler, ―Assertion-Based Verification‖ in

Advanced Formal Verification, Kluwer Academic

Publishers, 2004, pp. 167-202.

[8] P. Dasgupta, ―A roadmap for formal property

verification‖, Springer Netherlands, 2006.

[9] SPARC T1 Microarchitecture and RTL code [online].

Available:http://www.oracle.com/technetwork/systems/

opensparc/opensparc-t1-page-1444609.html

[10] Cadence Incisive Formal verifier [online]. Available:

http://www.cadence.com/products/ld/formal_verifier/pa

ges/default.aspx

Paper ID: SUB152403 1806

