Common Fixed Point Theorems Weak Compatible in Cone Metric Spaces

Raghu Nandan Patel¹, Damyanti Patel²

¹Department of Mathematics, Government Naveen Collee, Balrampur (C. G.), India
²Department of Mathematics, Government Engineering College, Bilaspur (C.G.), India

Abstract: In this paper we established common fixed point theorems for weakly compatible mappings in cone metric spaces.

AMS Subject Classification: 47H10, 54H25

Keywords: fixed point, cone metric spaces and weakly compatible mappings.

1. Introduction

The Banach contraction mapping principle is widely recognized as the source of metric fixed point theory. This contraction principle has further several generalizations in metric spaces as well as in cone metric spaces. Huang and Zhang [1] introduced the concept of cone metric space, where every pair of elements is assigned to an element of a Banach space and defined a partial order on the Banach space with the help of a subset of the Banach space called cone which satisfy certain properties.

2. Preliminary Notes

First, we recall some standard definitions and other results that will be needed in the sequel.

Definition 2.1. Let E be a real Banach space and P be a subset of E. P is called a cone if
(1) P is closed, nonempty and P ≠ {0};
(2) a, b ∈ R, a, b ≥ 0, x, y ∈ P ⇒ ax + by ∈ P;
(3) x ∈ P and −x ∈ P ⇒ x = 0.

A cone P is called normal if there is constant K > 0 such that, for all x, y ∈ E. 0 ≤ x ≤ y ⇒ ||x|| ≤ K||y||. The least value of constant K satisfying this inequality is called the normal constant of P.

Definition 2.3 [1]: Let X be a nonempty set and E be a real Banach space. Suppose that the mapping d: X × X → E satisfies
(1) 0 ≤ d(x, y), for all x, y ∈ E and d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x), for all x, y ∈ E;
(3) d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈ E

Then d is called a cone metric on X and (X, d) is called a cone metric space.

For examples of cone metric spaces we refer [1, 4].

Henceforth unless otherwise indicated, P is a normal cone in real Banach space E and “≤” is partial ordering with respect to P.

Definition 2.4 [1]: Let (X, d) be a cone metric space. Let {xn} be a sequence in X and x ∈ X.
(a) If for every c ∈ E with 0 ≤ c (or equivalently c ∈ P) there is positive integer n₀ such that for all n > n₀, d(xₙ, x) ≤ c then the sequence {xn} converges to x. We denote this by xₙ → x, as n → ∞ or limₙ→∞ xₙ = x.
(b) If for every c ∈ E with 0 < c there is positive integer n₀ such that for all n, m > n₀, d(xₙ, xₘ) < c then the sequence {xn} is called a Cauchy sequence in X.

(X, d) is called a complete cone metric space, if every Cauchy sequence in X is convergent in X.

Then d is called a cone metric on X and (X, d) is called a cone metric space.

Volume 4 Issue 3, March 2015

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY
We replace conditions (a) and (b) by weaker conditions and define cone altering function as follows:

Definition 2.10: Let \(\Psi : P \to P \) be a vector valued function then \(\Psi \) is called cone altering function if

(a) \(\Psi \) is non decreasing, subadditive;
(b) \(\Psi (a_i) \to 0 \) if and only if \(a_i \to 0 \), for any sequence \(\{a_i\} \) in \(P \).

Note that for cone altering function \(\Psi \) on normal cone \(P \), \(\Psi (a) = 0 \) if and only if \(a = 0 \).

Definition 2.11: Let \(X \) be any nonempty set, \(f, g : X \to X \) be mappings. A point \(w \in X \) is called point of coincidence of \(f \) and \(g \) if there is \(x \in X \) such that \(fx = gx = w \).

Definition 2.12: Let \(X \) be any nonempty set, \(f, g : X \to X \) be mappings. Pair \((f, g)\) is called weakly compatible if \(x \to w \) and \(By = Ty \). We claim that \(Ax = Ay \). If not, by inequality (3.2.3) there exist for all \(x, y \in X \) such that \(\Psi (d(Ax, Ay)) \leq a_1\Psi (d(Sx, Ty))+a_2\Psi (d(Ax, Sx))+a_3\Psi (d(Ay, Ty))+a_4\Psi (d(Ax, Ty))+a_5\Psi (d(Ax, Ay)) \)

where \(a_i, i = 1, 2, 3, 4, 5 \) are nonnegative constant such that \(a_1+a_2+a_3+a_4+a_5 < 1 \). Then there exists a unique point \(w \in X \) such that \(Aw = Sw = w \) and a unique point \(z \in X \) such that \(Az = Tz = z \). Moreover \(z = w \), so that there is a unique common fixed point of \(A, B, S \) and \(T \).

Main Results

Theorem 3.1: Let \((X, d) \) be a cone metric space with normal cone \(P \) and let \(A, B, S \) and \(T \) be self mappings of \(X \). \(\Psi : P \to P \) is cone altering function such that

(3.1.1) \(\Lambda(X) \subseteq S(X) \cap T(X) \)

(3.1.2) the pairs \(\{A, S\} \) and \(\{A, T\} \) be weakly compatible.

(3.1.3) there exist for all \(x, y \in X \)

\[\Psi (d(Ax, Ay)) \leq a_1\Psi (d(Sx, Ty))+a_2\Psi (d(Ax, Sx))+a_3\Psi (d(Ay, Ty))+a_4\Psi (d(Ax, Ty))+a_5\Psi (d(Ax, Ay)) \]

where \(a_i, i = 1, 2, 3, 4, 5 \) are nonnegative constant such that \(a_1+a_2+a_3+a_4+a_5 < 1 \). Then there exists a unique point \(w \in X \) such that \(Aw = Sw = w \) and a unique point \(z \in X \) such that \(Az = Tz = z \). Moreover \(z = w \), so that there is a unique common fixed point of \(A, B, S \) and \(T \).

Proof: Let the pairs \(\{A, S\} \) and \(\{A, T\} \) be weakly compatible so there are points \(x, y \in X \) such that \(Ax = Sx \) and \(Ay = Ty \). We claim that \(Ax = Ay \). If not, by inequality (3.1.3)

\[\Psi (d(Ax, Ay)) \leq a_1\Psi (d(Sx, Ty))+a_2\Psi (d(Ax, Sx))+a_3\Psi (d(Ay, Ty))+a_4\Psi (d(Ax, Ty))+a_5\Psi (d(Ax, Ay)) \]

where \(a_i, i = 1, 2, 3, 4, 5 \) are nonnegative constant such that \(a_1+a_2+a_3+a_4+a_5 < 1 \). Then there exists a unique point \(w \in X \) such that \(Aw = Sw = w \) and a unique point \(z \in X \) such that \(Az = Tz = z \). Moreover \(z = w \), so that there is a unique common fixed point of \(A, B, S \) and \(T \).

Assume that \(w \neq z \). We have

\[\Psi (d(w, z)) = \Psi (d(Aw, Az)) \]

\[\leq a_1\Psi (d(Sw, Tz))+a_2\Psi (d(Aw, Sw))+a_3\Psi (d(Az, Tz))+a_4\Psi (d(Aw, Az)) \]

\[+a_5\Psi (d(Aw, Sw)) \]

\[= a_1\Psi (d(w, z))+a_2\Psi (d(w, w))+a_3\Psi (d(z, z))+a_4\Psi (d(w, z)) \]

\[+a_5\Psi (d(z, w)) \]

\[= (a_1+a_2+a_3)\Psi (d(z, w)) \]

since \((a_1+a_2+a_3) < 1\) hence by proposition 2.2, we have \(\Psi (d(Aw, Bz)) = 0 \) i.e. \(d(Aw, Bz) = 0 \) or \(Aw = Bz \). Therefore \(Ax = Sx = Ay = Ty \). Suppose that there is another point \(z \) such that \(Az = Sz \) then by (3.1.3) we have \(Az = Sz = Ay = Ty \), so \(Ax = Az \) and \(w = Ax = Sx \) is the unique point of coincidence of \(A \) and \(S \). By Lemma 2.14 \(w \) is the only common fixed point of \(A \) and \(S \). Similarly there is a unique point \(z \in X \) such that \(z = Az = Tz \).
+a_3 \Psi[d(z, w)]
= (a_1 + a_4 + a_5) \Psi[d(z, w)]
since \((a_1 + a_4 + a_5) < 1\) hence by proposition 2.2, we have \(\Psi[d(w, z)] = 0\) i.e. \(d(w, z) = 0\) or \(w = z\) by Lemma 2.14 and \(z\) is a unique common fixed point of \(A, B, S\) and \(T\).

References

Author Profile

Dr Raghu Nandan Patel is Assistant Professor, Department of Mathematics, Govt, Naveen College Balrampur (C. G.) India

Dr Damyanti Patel is Lecture in Department of Mathematics, Government Engineering College, Bilaspur (C. G.) India