
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

A Survey on Implementation of Random Number

Generator in FPGA

Pallavi Bhaskar
1
, Prof. P. D. Gawande

2

Department of Electronics and Telecommunication, Sipna College of Engineering and Technology

Sant Gadge Baba Amravati University, India

Abstract: A pseudo random number generator (PRNG), also known as a deterministic random bit generator(DRBG), is an algorithm

for generating a sequence of random numbers. This paper presents an implementation of pseudo random number generator. The design

has been specified in VHDL and is implemented on altera FPGA device. It is based on the Residue Number System (RNS),which gives

us the way to design a very fast circuit. This paper presents design and implementation of a pseudo-random number generator based on

Blum Blum Shub, XOR Shift, Fibonacci series and Galois LFSR methods. We will demonstrate that how the introduction of application

specificity in the architecture can deliver huge performance in terms of area and speed. The design will specify in VHDL and will

analyze on altera FPGA parameter. Which will give us higher throughput and also the parameter like area, propagation delay and

power requirement.

Keywords: Blum Blum Shub method, Fibonacci series method, Galois LFSR method, VHDL, XOR Shift

1. Introduction

A Random Number Generator (RNG) is a source of

unpredictable numbers, which means that it is impossible to

predict its outcome with an accuracy greater than the one

given by the pure luck; a classic example is the coin toss,

assuming a fair (i.e., unbiased) coin. In many practical

applications such as cryptography, model simulation,

sampling, games of chance, among others, there is a need of

the generation of series of random numbers. This is

achieved, for example, by means of tables, specific

algorithms or electronic circuits. Unlike the natural sources

of noise, these generators possess a finite period, so that they

are called pseudorandom number generators (PRNGs). Most

of the work on random number generator has been done on

the algorithm and the development of software for them and

not much work has been done on the hardware

implementation of the random number generator. Yuan Li

et. Al has done the hardware implementation of the random

number generator based on Mersenne Twister (MT)

algorithm and their random number generator produces 450

million samples per second.

2. Literature Review

GU Xiao-chen, ZHANG Min-xuan introduced a new kind of

URNG using Leap-Ahead LFSR Architecture which could

generate an m-bits random number per cycle using only one

LFSR. They analyzed its architecture, present the expression

of the period and point out how to choose the taps of the

LFSR. Finally, a 18-bits URNG was implemented on Xilinx

Vertex Ⅳ FPGA.. By comparison, the Leap-Ahead LFSR

Architecture URNG consumes less than 40 slices which was

only 10% of what the Multi-LFSRs architecture consumes

and acquires very good Area Time performance and

Throughput performance that were 2.18×10-9 slices×sec per

bit and 17.87×109 bits per sec.[1]

 Fabio Pareschi, Gianluca Setti, and Riccardo Rovatti given

that the architecture used for common pipeline ADCs can be

reused for designing a chaotic circuit, which is very

appealing for the generation of random numbers. Following

this approach they have de- signed two prototypes of a true-

random number generator in 0.35- m and 0.18- m CMOS

technology, capable of generating random bits with a

throughput, respectively, of 40 Mbit/s and 100 Mbit/s[2].

 Jonathan M. Comer, Juan C. Cerda, Chris D. Martinez, and

David H. K. Hoe Evaluated the performance of CA-based

PRNGs suitable for implementation on FPGAs. Their results

for the Xilinx Spartan 3E FPGA given a good idea of the

relative resources required for each configuration. The

DIEHARD suite of statistical tests was used to evaluate the

quality of the random numbers produced from each

configuration. It was found that the 37 bit LFSR + 16 bit CA

and the 52 bit LFSR + 8 bit CA produced the best results.

The LFSR + CA uses less overhead than the SPCA and

produces higher quality random numbers, but the SPCA

gives much greater throughput with similar randomness but

greater overhead.[3]

 Pawel Dabal Ryszard Pelka In this the author described

implementation of three versions of chaotic pseudo-random

bit generators in five selected FPGA devices offered by

Xilinx. A comparative study of required number of FPGA

resources and maximum operating frequencies had been

presented. They had shown that the proposed PRBG

architectures can be relatively easy implemented in FPGA

devices and used in embedded SoC systems. It is also

possible to implement dedicated interfaces for different bus

standards.[4]

 Carlos Arturo Gayoso, C. González, L. Arnone, M. Rabini,

Jorge Castiñeira Moreira presented a new PRNG based on

the RNS. The proposed circuit had a dynamic, due to the use

of RNS, different than known generators. It also had a

superior performance in terms of speed and resource usage

with respect to its realization in 2's complement. Rigorous

tests like those of the pack Diehard for testing randomness

of numeric series have been applied to the generated

sequences, to verify that the proposed generator

satisfactorily passes the different tests applied.[5]

Paper ID: SUB152333 1590

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

3. Methods Used

We are going using Modelsim and Quartus 2 software. Here

are the following methods which will produce the

pseudorandom number generator mentioned below.

1. Design of a Random Number Generator using XOR Shift

method XOR shift is a category of pseudorandom number

generators. It repeatedly uses the transform of exclusive or

on a number with a bit shifted version of it.

The bits in the LFSR state which influence the input are

called taps. A maximum-length LFSR produces an m-

sequence (i.e. it cycles through all possible 2n -1 states

within the shift register except the state where all bits are

zero), unless it contains all zeros, in which case it will never

change. The sequence of numbers generated by this method

is random. The period of the sequence is (2n - 1), where n is

the number of shift registers used in the design. For 32 bit

design the period is 4294967295. This is large enough for

most of the practical application. The arrangement of taps

for feedback in an LFSR can be expressed in finite field

arithmetic as a polynomial mod 2. This means that the

coefficients of the polynomial must be 1's or 0's. [8][13]

2. Design of a Random Number Generator using Fibonacci

series method Fibonacci series method works on the

principal of Sn = Sn-1 + Sn -2 . It performs binary addition

like addition, subtraction, multiplication or Ex - Or

operation. The rightmost bit of the LFSR is called the output

bit. The taps are XOR'd sequentially with the output bit and

then fed back into the leftmost bit. The sequence of bits in

the rightmost position is called the output stream.

There can be more than one maximum-length tap sequence

for a given LFSR length. Also, once one maximum- length

tap sequence has been found, another automatically follows.

If the tap sequence, in an n-bit LFSR, is [n, A, B, C, 0],

where the 0 corresponds to the x0 = 1 term, then the

corresponding 'mirror' sequence is [n, n − C, n − B, n − A,

0]. As well as Fibonacci, this LFSR configuration is also

known as standard, many-to-one or external XOR gates.

LFSR has an alternative configuration.[1]

3. Design of a Random Number Generator using Galois

LFSR method.

 In Galois method, when the system is clocked, bits that are

taps are shifted one position to the right unchanged. The taps

on the other hand are XOR with the output bit before they

are stored in next position. The effect of this is that when the

output bit is zero all the bits in the register shift to the right

unchanged, and the input bit becomes zero. When the output

bit is one, the bits in the tap positions all flip (if they are 0,

they become 1, and if they are 1, they become 0), and then

the entire register is shifted to the right and the input bit

becomes 1. an LFSR in Galois configuration, which is also

known as modular, internal XORs as well as one-to-many

LFSR, is an alternate structure that can generate the same

output stream as a conventional LFSR (but offset in

time).[1][9]

4. Design of a Random Number Generator using Blum Blum

Shub method Blum Blum Shub (B.B.S.) is a pseudorandom

number generator works on the principal of Xn+1 = Xn

mod

Where n=p x q is the product of two large primes p and q. At

each step of the algorithm, some output is derived from

xn+1; the output is commonly the bit parity of Xn+1 or one

or more of the least significant bits of Xn+1. The two

primes, p and q, should both be congruent to 3 (mod 4) (this

guarantees that each quadratic residue has one square root

which is also a quadratic residue) and GCD (φ(p-1), φ(q-1))

should be small (this makes the cycle length large).[11][12]

4. Conclusion

In this paper, we are going to generate random numbers to

get higher throughput means in how much time maximum

random numbers will be generated. In our proposed work,

we are going to implement the basic to other methods which

will give us higher throughput and also the parameter like

area, propagation delay and power requirement will be

compared with previous authors implementation.

References

[1] GU Xiao-chen, ZHANG Min-xuan School of Computer

National University of Defense Technology Changsha,

China “Uniform Random Number Generator using

Leap-Ahead LFSR Architecture” 2009 International

Conference on Computer and Communications Security

Paper ID: SUB152333 1591

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

[2] Fabio Pareschi, Member, IEEE, Gianluca Setti, Fellow,

IEEE, and Riccardo Rovatti, Senior Member, IEEE

“Implementation and Testing of High-Speed CMOS

True Random Number Generators Based on Chaotic

Systems” IEEE TRANSACTIONS ON CIRCUITS

AND SYSTEMS—I: REGULAR PAPERS, VOL. 57,

NO. 12, DECEMBER 2010

[3] Jonathan M. Comer, Juan C. Cerda, Chris D. Martinez,

and David H. K. Hoe Department of Electrical

Engineering The University of Texas at Tyler “Random

Number Generators using Cellular Automata

Implemented on FPGAs” 44th IEEE Southeastern

Symposium on System Theory University of North

Florida, Jacksonville, FL March 11-13, 2012

[4] Pawel Dabal Faculty of Electronics Military

UniverRyszard Pelka Faculty of Electronics Military

University of Technology Warsaw, Poland sity of

Technology Warsaw, Poland “FPGA Implementation of

Chaotic Pseudo-Random Bit Generators” MIXDES

2012, 19th International Conference "Mixed Design of

Integrated Circuits and Systems" , May 24-26, 2012,

Warsaw, Poland

[5] Carlos Arturo Gayoso, C. González, L. Arnone, M.

Rabini, Jorge Castiñeira Moreira “Pseudorandom

Number Generator Based on the Residue Number

System and its FPGA Implementation” 2013 Argentine

School of Micro-Nanoelectronics, Technology and

Applications

[6] Ravi Saini, Sanjay Singh, Anil K Saini, AS Mandal,

Chandra Shekhar CSIR- Central Electronics

Engineering Research Institute (CSIR-CEERI) Pilani-

333031, Rajasthan, India “Design of a Fast and

Efficient Hardware Implementation of a Random

Number Generator in FPGA” 2013 International

Conference on Advanced Electronic Systems (ICAES)

[7] David B. Thomas, Member, IEEE, and Wayne Luk,

Fellow, IEEE ”The LUT-SR Family of Uniform Random

Number Generators for FPGA Architectures” IEEE

TRANSACTIONS ON VERY LARGE SCALE

INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 4,

APRIL 2013

[8] Amit Kumar Panda*, Praveena Rajput, Bhawna Shukla

Deptt. of ECE, IT Guru Ghasidas Vishwavidyalaya

Bilaspur, India FPGA “Implementation of 8, 16 and 32

Bit LFSR with Maximum Length Feedback Polynomial

using VHDL” 2012 International Conference on

Communication Systems and Network Technologies

[9] Beker, Henry; Piper, Fred (1982). Cipher Systems: The

Protection of Communications. Wiley-Interscience. p.

212

[10] Paplinski, A.P. and Bhattacharjee, N, “Hardware

implementation of the Lehmer random number

generator,” IEE Proceedings of Computers and Digital

Techniques, vol. 143, no. 1, pp. 93 –95, 1996.

[11] Lenore Blum, Manuel Blum, and Michael Shub.

Comparison of two pseudo-random number generators.

In R. L. Rivest, A. Sherman, and D. Chaum, editors,

Proc. CRYPTO 82, pages 61–78, New York, 1983.

Plenum Press.

[12] Cryptographic Secure Pseudo-Random Bits Generation

: The Blum-Blum-Shub Generator Pascal Junod August

1999

[13] Goresky, M. and Klapper, A.M. Fibonacci and Galois

representations of feedback-with-carry shift registers,

IEEE Transactions on Information Theory, Nov 2002,

Volume: 48, On page(s): 2826-2836.

Paper ID: SUB152333 1592

