
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Hadoop: Understanding the Big Data Processing

Method

Deepak Chandra Upreti
1
, Pawan Sharma

2
, Dr. Yaduvir Singh

3

1PG Student, Department of Computer Science & Engineering, Ideal Institute of Technology

2Assistant Professor, Department of Computer Science & Engineering, Ideal Institute of Technology, Ghaziabad

3Professor, Department of Computer Science & Engineering, Ideal Institute of Technology, UPTU, Lucknow, India

Abstract: “Every day, we create 2.5 quintillion bytes of data so much that 90% of the data in the world today has been created in the

last two years alone. This data comes from everywhere: sensors used to gather climate information, posts to social media sites, digital

pictures and videos, purchase transaction records, and cell phone GPS signals to name a few. This data is “big data.” Big data requires

different approaches: Techniques, tools, architecture and data processing methods. The main focus of the paper is to draw the state-of-

the-art techniques and technologies for Big Data processing with the help of Big Data application- Hadoop

Keywords: Apache Hadoop, big data, Java, Google File System, Google MapReduce, open source, MapR, Oracle, distributed file system,

HDFS, redundant array of inexpensive disks, replication factor, NameNode, DataNode, MapReduce, JobTracker, TaskTracke,r yet another

resource negotiator, PigLatin, HiveQL, Hbase

1. Introduction

Big Data has gained much attention from the academia and

the IT industry. In the digital and computing world,

information is generated and collected at a rate that rapidly

exceeds the boundary range. Currently, over 2 billion people

worldwide are connected to the Internet, and over 5 billion

individuals own mobile phones. By 2020, 50 billion devices

are expected to be connected to the Internet. At this point,

predicted data production will be 44 times greater than that

in 2009. As information is transferred and shared at light

speed on optic fiber and wireless networks, the volume of

data and the speed of market growth increase. However, the

fast growth rate of such large data generates numerous

challenges, such as the rapid growth of data, transfer speed,

diverse data, and security. This research direction facilitates

the exploration of the domain and the development of

optimal techniques to address Big Data.

Hadoop is a powerful technology, but it is just one

component of the big data technology landscape. Hadoop is

designed for specific data types and workloads. For example,

it is a very cost-effective technology for staging large

amounts of raw data, both structured and unstructured,

which can then be refined and prepared for analytics.

Hadoop can also help you avoid costly upgrades of existing

proprietary databases and data warehouse appliances when

their capacity is being consumed too quickly with raw,

unused data and extract-load-transform processing.

Apache Hadoop3 is a Java-based open source platform that

makes processing of large data possible over thousands of

distributed nodes. Hadoop’s development resulted from

public- ation of two Google authored whitepapers (i.e.,

Google File System and Google Map –Reduce

2. Hadoop

Hadoop is a distributed file system and data processing

engine that is designed to handle extremely high volumes of

data in any structure. Hadoop focus in on supporting

redundancy, distributed architectures, and parallel

processing. It is an open-source software framework from

Apache Inspired by

 GFS (Google File System)

 Google MapReduce

Hadoop has two base components

 The Hadoop distributed file system (HDFS), Which

supports data in structured relational form, in unstructured

form, and in any form in between

 The MapReduce programing paradigm for Managing

applications on multiple distributed servers

3. Hadoop Distributed File System (HDFS)

Hadoop distributed file system (HDFS) is a base component

of the Hadoop framework that manages the data storage.It

stores data in the form of data blocks (default size: 64MB)

on the local hard disk. The input data size defines the block

size to be used in the cluster. A block size of 128MB for a

large file set is a good choice. Keeping large block sizes

means a small number of blocks can be stored, thereby

minimizing the memory requirement on the master node

(commonly known as NameNode) for storing the metadata

information. Block size also impacts the job execution time,

and thereby cluster performance. A file can be stored in

HDFS with a different block size during the upload process.

For file sizes smaller than the block size, the Hadoop cluster

may not perform optimally.

Paper ID: SUB152290 1620

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Functions of a NameNode

a) Manages File System Namespace

 Maps a file name to a set of blocks

 Maps a block to the DataNodes where it resides

b) Cluster Configuration Management

c) Replication Engine for Blocks

NameNode Metadata

a) Metadata in Memory

 The entire metadata is in main memory

 No demand paging of metadata

b) Types of metadata

 List of files

 List of Blocks for each file

 List of DataNodes for each block

 File attributes, e.g. creation time, replication factor

c) A Transaction Log

 Records file creations, file deletions etc

NameNode Failure

a) A single point of failure

b) Transaction Log stored in multiple directories

 A directory on the local file system

 A directory on a remote file system (NFS/CIFS)

c) Need to develop a real high availability (HA) solution

Data Node

a) A Block Server

 Stores data in the local file system (e.g. ext3)

 Stores metadata of a block (e.g. CRC)

 Serves data and metadata to Clients

b) Block Report

 Periodically sends a report of all existing blocks to the

NameNode

c) Facilitates Pipelining of Data

 Forwards data to other specified DataNodes

Block Placement

a) Current Strategy

 One replica on local node

 Second replica on a remote rack

 Third replica on same remote rack

 Additional replicas are randomly placed

b) Clients read from nearest replicas

c) Would like to make this policy pluggable

Replication Engine

a) NameNode detects DataNode failures

 Chooses new DataNodes for new replicas

 Balances disk usage

 Balances communication traffic to DataNodes

4. MapReduce

MapReduce – Dataflow

MapReduce is the second base component of a Hadoop

framework. It manages the data processing part on the

Hadoop cluster. A cluster runs MapReduce jobs written in

Java or any other language (Python, Ruby, R, etc.) via

streaming. A single job may consist of multiple tasks. The

number of tasks that can run on a data node is governed by

the amount of memory installed. It is recommended to have

more memory installed on each data node for better cluster

performance. Based on the application workload that is

going to run on the cluster, a data node may require high

compute power, high disk I/O or additional memory.

Paper ID: SUB152290 1621

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

MapReduce – Features

a) Fine grained Map and Reduce tasks

 Improved load balancing

 Faster recovery from failed tasks

b) Automatic re-execution on failure

 In a large cluster, some nodes are always slow or flaky

 Framework re-executes failed tasks

c) Locality optimizations

 With large data, bandwidth to data is a problem

 Map-Reduce + HDFS is a very effective solution

 Map-Reduce queries HDFS for locations of input data

 Map tasks are scheduled close to the inputs when

possible

1. Hadoop: A Big Data Processing Method

 Hadoop/MapReduce technology

a) Learn the platform (how it is designed and works)

 How big data are managed in a scalable efficient way

b) Learn writing Hadoop jobs in different languages

 Programming Languages: Java, C, Python

 High-Level Languages: Apache Pig, Hive

c) Learn advanced analytics tools on top of Hadoop

 RHadoop: Statistical tools for managing big data

 Mahout: Data mining and machine learning tools over

big data.

d) Learn state-of-art technology from recent research

papers

 Optimization, indexing techniques, and Other

extensions to Hadoop

Hadoop Services Schematic

The job execution process is handled by the JobTracker and

TaskTracker services. The type of

MapReduce: High Level

Nodes, Trackers, Tasks

 Master node runs JobTracker instance, which accepts

Job requests from clients

 TaskTracker instances run on slave nodes

 TaskTracker forks separate Java process for task

instances

Job Distribution

 MapReduce programs are contained in a Java “jar” file +

an XML file containing serialized program configuration

options

 Running a MapReduce job places these files into the

HDFS and notifies TaskTrackers where to retrieve the

relevant program code

 … Where’s the data distribution?

job scheduler chosen for a cluster depends on the application

workload. If the cluster will be running short running jobs,

then FIFO scheduler will serve the purpose. For a much

more balanced cluster, one can choose to use Fair Scheduler.

If the node running JobTracker service fails, all jobs

submitted in the cluster will be discontinued and must be

Paper ID: SUB152290 1622

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

resubmitted once the node is recovered or another node is

made available.

Data Distribution

a) Implicit in design of MapReduce!

 All mappers are equivalent; so map whatever data

is local to a particular node in HDFS

b) If lots of data does happen to pile up on the same

node, nearby nodes will map

Partition And Shuffle

1. Example Program - Wordcount

a) map()

 Receives a chunk of text

 Outputs a set of word/count pairs

b) reduce()

 Receives a key and all its associated values

 Outputs the key and the sum of the values

package org.myorg;

import java.io.IOException;

import java.util.*;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.conf.*;

import org.apache.hadoop.io.*;

import org.apache.hadoop.mapred.*;

import org.apache.hadoop.util.*;

public class WordCount {

Wordcount – main()

public static void main(String[] args) throws Exception {

JobConf conf = new JobConf(WordCount.class);

conf.setJobName("wordcount");

conf.setOutputKeyClass(Text.class);

conf.setOutputValueClass(IntWritable.class);

conf.setMapperClass(Map.class);

conf.setReducerClass(Reduce.class);

conf.setInputFormat(TextInputFormat.class);

conf.setOutputFormat(TextOutputFormat.class);

FileInputFormat.setInputPaths(conf, new Path(args[0]));

FileOutputFormat.setOutputPath(conf, new Path(args[1]));

JobClient.runJob(conf);

}

Wordcount – map()

public static class Map extends MapReduceBase … {

private final static IntWritable one = new IntWritable(1);

private Text word = new Text();

public void map(LongWritable key, Text value,

OutputCollector<Text, IntWritable> output, …) … {

String line = value.toString();

StringTokenizer tokenizer = new StringTokenizer(line);

while (tokenizer.hasMoreTokens()) {

word.set(tokenizer.nextToken());

output.collect(word, one);

}

}

}

Wordcount – reduce()

public static class Reduce extends MapReduceBase … {

public void reduce(Text key, Iterator<IntWritable> values,

OutputCollector<Text, IntWritable> output, …) … {

int sum = 0;

while (values.hasNext()) {

sum += values.next().get();

}

output.collect(key, new IntWritable(sum));

}

}

}

2. Using Hadoop Distributed File System (HDFS)

 Can access HDFS through various shell commands (see

Further Resources slide for link to documentation)

a) hadoop–put <localsrc> … <dst>

b) hadoop –get <src> <localdst>

c) hadoop –ls

d) hdoop –rm file

Running a Hadoop Job

a) Place input file into HDFS:

 hadoop fs –put ./input-file input- file

b) Run either normal or streaming version:

 hadoop jar Wordcount.jar org.myorg.Wordcount

input-file output- file

 hadoop jar hadoop-streaming.jar\

 ~ input input-file \

 ~ output output-file \

 ~ file Streaming_Mapper.py \

 ~ mapper python Streaming_Mapper.py \

 ~ file Streaming_Reducer.py \

 ~ reducer python Streaming_Reducer.py \

Related Apache Sub-Projects

The Hadoop Ecosystem

Hadoop base components are surrounded by numerous

ecosystem projects. Many of them are already top-level

Apache (open source) projects; some, however, remain in

the incubation stage. Here we highlights a few of the ecosys-

tem components. The most common ones include

 Pig – High-level language for data analysis

 HBase – Table storage for semi-structured data

Paper ID: SUB152290 1623

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 Zookeeper – Coordinating distributed applications

 Hive – SQL-like Query language and Metastore

 Mahout – Machine learning

5. Conclusion

This paper presents one of the Big Data processing methods

called Hadoop. This concept includes the increase in data,

the progressive demand for data processing, and the role of

Big Data in the current environment of enterprise and

technology. To enhance the efficiency of data processing, we

have devised a hadoop method that uses the technologies and

terminologies of Big Data. The stages in this technology

include basics, HDFC, MapReduce and Related Apache sub-

projects. All these stages are important for big data

processing method i.e. hadoop. Information is

simultaneously increasing at an exponential rate, but

information processing methods are improving relatively

slowly. Currently, a limited number of tools are available to

completely address the issues in BigData analysis. The state-

of-the-art techniques and technologies in many important

Big Data applications (i.e., Hadoop, Hbase, and Cassandra)

cannot solve the real problems of storage,

References

[1] Big Data Technology

[2] Harnessing-Hadoop

[3] Considerations for Big Data: Architecture and Approach

by Kapil Bakshi – Paper published in IEEE

[4] Big Data Analytics by Sachidanand Singh – Paper

published in 2012 International Conference on

Communication Information & Computing Technology

(ICCICT), Oct. 19-20, Mumbai, India

[5] McKinsey Global Institute

[6] http://hadoop.apache.org/

[7] S. Kaisler, F. Armour, J. A. Espinosa, and W.Money,

“Big data: issues and challe- nges moving forward,” in

Proceedings of the IEEE 46th Annual Hawaii

Internation- al Conference on System Sciences (HICSS

’13), pp.995–1004, January 2013.

Paper ID: SUB152290 1624

http://hadoop.apache.org/

