
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Analysis and Data Retrieval by Filtering Packets in

High Speed Routers

Indumathi
1
, K. Kumar

2

1MCA (Final Year) Vel Tech, Veltech Technical University

2Assistant Professor, Velltech Technical University

Abstract: In this paper, we are going to decompose the operation of multimatch packet classification from the complicated

multidimensional search to several single-dimensional searches, and present an asynchronous pipeline architecture based on a

signature tree structure to combine the intermediate results returned from single-dimensional searches. By spreading edges of the

signature tree across multiple hash tables at different stages, the pipeline can achieve a high throughput via the interstate parallel access

to hash tables. Two edge-grouping algorithms are designed to evenly divide the edges associated with each stage into multiple work-

conserving hash tables. The proposed pipeline architecture outperforms Hyper Cuts and B2PC schemes in classification speed by at

least one order of magnitude, while having a similar storage requirement. Particularly, with different types of classifiers of 4K rules, the

proposed pipeline architecture is able to achieve a throughput between 26.8 and 93.1 GB/s using perfect hash tables. Multiple string

match is an important problem in many application areas of computer for instance there is an increasing demand for fast analysis and

data retrieval although there are various kinds of comparison tools that provide aligning and approximate matching most of them are

based on exact matching in order to speed up the process. Multiple string match is an important problem in many application areas of

computer for instance there is an increasing demand for fast analysis and data retrieval although there are various kinds of comparison

tools that provide aligning and approximate matching most of them are based on exact matching in order to speed up the process.

Another important usage of multiple string matching algorithms appears in NIDS [network intrusion detection systems]. Snort is a light

weight open source NIDS which can filter packets based on predefined rules. Another important usage of multiple string matching

algorithms appears in NIDS [network intrusion detection systems]. Snort is a light weight open source NIDS which can filter packets

based on predefined rules.

Keywords: Multimatch packet, High-speed routers, Data retrieval, NIDS, TCOM

1. Introduction

As the Internet are growing to rapidly, packet classification

has become a major bottleneck of high-speed Routers. Most

traditional network applications require packet Classification

to return the best or highest-priority matched rule[1].

However, with the emergence of new network applications

like Network Intrusion Detection System (NIDS), packet-

level accounting, and load balancing, packet classification is

required to report all matched rules, not only the best

matched rule. Packet classification with this capability is

called multimatch packet classification to distinguish it from

the conventional best-match packet classification[1][2].

Many schemes have been proposed in literature aiming at

optimizing the performance of packet classification in terms

of classification speed and storage cost. However, most of

them focus on only the best-match packet classification.

Although some of them could also be used for multimatch

packet classification, they suffer from either a huge memory

requirement or steep performance degradation under certain

types of classifiers. Ternary content addressable memory is

well known for its parallel search capability and constant

processing speed, and it is widely used in IP route lookup

and best-match packet classification. Due to the limitation of

its native circuit structure, Ternary content addressable

memory(TCAM)can only return the first matching entry,

and therefore cannot be directly used in multimatch packet

classification. To enable the multimatch packet classification

on Ternary content addressable memory, some research

works published recently propose to add redundant

intersection rules in TCAM. However, the introduction of

redundant intersection rules further increases the already

high implementation cost of the Ternary content addressable

memory system. The objective of this paper is to design a

high-throughput and memory-efficient multimatch packet

classification scheme without using TCAMs[1][3]. Given

the fact that a single-dimensional search is much simpler and

has already been well studied, we decompose the complex

multimatch packet classification into two steps. In the first

step, single-dimensional searches are performed in parallel

to return matched fields in each dimension.

In this paper are summarized as follows.

1) We model the multimatch packet classification as a

concatenated multistring matching problem[2], which

can be solved by traversing a signature tree structure.

2) We propose an asynchronous pipeline architecture to

accelerate the traversal of the signature tree. By

distributing

3) Edges of the signature tree into hash tables at different

stages, the proposed pipeline can achieve a very high

throughput.

We propose two edge-grouping algorithms to partition the

hash table at each stage of the pipeline into multiple work

conserving hash tables, so that the intrastate parallelism can

be exploited. By taking advantage of the properties of the

signature tree, the proposed edge-grouping algorithms

perform well in solving the location problem, overhead

minimization problem, and balancing problem involved in

the process of hash table partition.

4) We propose a hybrid perfect hash table construction

scheme, which can build perfect hash tables for each stage

Paper ID: SUB152286 1127

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

of the pipeline structure, leading to an improved

performance in both classification speed and storage

complexity.

2. Motivation

Due to the high power consumption of TCAM, some

schemes are proposed to reduce it using one of the following

two ideas: 1) reducing the TCAM entries required to

represent a classifier by using range encoding or logic

optimization or 2) selectively activating part of the TCAM

blocks when performing a classification. Although these

schemes reduce the power consumption of TCAM, they

cannot be directly applied to multimatch packet

classification. To enable the multimatch packet classification

on TCAM, proposes several schemes that allow TCAM to

return all matched entries by searching the TCAM multiple

times after adding a discriminator field in TCAM.

Consequently, the power consumption and processing time

increase linearly when the number of entries matching a

packet increases.

Figure 1: Segment encoding versus range encoding

In this paper, we focus on the two-stage schemes, in which

the multidimensional search of packet classification is first

decomposed into several single-dimensional searches, and

then the intermediate results of single-dimensional searches

are combined to get the final matched rule. To facilitate the

combination operation, each field of rules in the two-stage

schemes is usually encoded as either a range ID or several

segment IDs. Consider the classifier shown in Fig. 1, which

has three two-dimensional rules, each represented by a

rectangle. Ranges are defined as the

Projections of the rectangles along a certain axis.

3. Problem Definition

A classifier is a set of rules, sorted in descending order of

priorities. The priorities of rules are usually defined by their

rule IDs, where a smaller rule ID means a higher priority.

Each rule includes fields, each of which represents a range

of a certain dimension. From a geometric point of view,

each rule represents a hyper-rectangle in the -dimensional

space. Since each packet header corresponds to a point in the

–dimensional space, the problem of conventional best-match

packet classification is equivalent to finding the highest-

priority hyper-rectangle enclosing point ,while the problem

multimatch packet classification is equivalent to finding all

hyper-rectangles enclosing point . In order to perform the

multimatch packet classification efficiently, given a

classifier, we convert it to an encoded counterpart by

assigning each distinct range a unique ID on each

dimension. Given the classifier in Table I, its encoded

counterpart is shown in Table II, in which is the ID of the

unique range appearing on the dimension of the classifier.

In order to perform the multimatch packet classification

efficiently, given a classifier, we convert it to an encoded

counterpart by assigning each distinct range a unique ID on

each dimension.

The main challenge of the concatenated multistring

matching problem is to examine a large number of

concatenated strings at an extremely high speed to meet the

requirement of high-speed routers[6].

4. Literature Survey

If we can build an efficient filter for a single rule, does it

mean we can build an equally efficient packet filtering

system for multiple rules.

An ideal packet filtering system should have the following

properties:

 All the matching rules can be identified in a single scan. It

means that a packet can be processed without repeated

tests on the same fields.

 The time required for rule matching is insensitive to the

number of rules.

Basically, there are two approaches in building a packet filer

for multiple rules. One is to simply put together all the filters

for individual rules, then test these filters one after another.

Clearly, this is not a good choice. For example, a packet will

be tested against each rule separately, while every

elementary comparison common to the multiple rules will be

checked more than once. Like the expression “p.e_type”, it

is going to be compared with the same value by all the rules

for the IP protocol in the system. More over, the number of

matching rules largely affects the performance of a filtering

system. In other words, a filtering system working fine for

five rules may become unacceptably slow for one hundred

rules[7].

Another approach in building a packet filtering system is

through a DFA (Deterministic Finite Automaton) like

automaton, which can rapidly select the matching-patterns in

a single scan of input [8]. A typical scenario in fulfilling this

approach is to preprocess all the patterns into a DFA-like

automaton, then scan the packet fields in a left to right

manner. In the paper written by R. C. Sekar, R. Ramesh, and

I.V. Ramakrishnan [13], a new concept named “Adaptive

Pattern Matching” is proposed. The basic idea is to adapt the

traversal order to suit the input patterns. Simply put, instead

of browsing the information from the input one by one, we

can improve the system performance by skipping over those

fields that are irrelevant for matching any pattern. A detailed

discussion of this algorithm can be found in [13].

Paper ID: SUB152286 1128

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The adaptive pattern matching is a good fit for the packet

filtering system. First, in a network packet, most of the

critical information is stored in the various protocol headers,

like IP header, TCP header or HTTP header, etc. Within a

protocol header, we may only care about a small part of

fields, e.g. source address in the IP header, SYN flag in the

TCP header. Therefore, many fields in the protocol headers

and almost the entire data portion of a packet are always

useless for the pattern matching purpose, because most

known intrusion patterns can be discovered through

checking partial number of fields in a packet. So, by

skipping most irrelevant data and examining only a limited

number of fields of a packet, we can gain significant

performance improvement over traditional packet filtering

approach.

In the context of packet filtering for network intrusion

detection, an intrusion pattern is described as a part of a

matching rule in our ASL system. A direct observation is

more than one rule can be matched simultaneously. For

instance, a rule “p.s_addr==xx.yy.zz.ww” can be matched at

the same time another rule “(p.s_addr==xx.yy.zz.ww) &&

(p.protocol==IP_ICMP)” is matched. This is the difference

of our filter model from that of BPF or any other packet

filter. In those filters, only one value is returned by the filter

function to indicate whether the packet should be captured

or discarded. By contrast, our filter needs to report all the

rules matched by a packet.

5. Algorithm for Automaton Construction

Procedure Build (v) {

1. v is a node in automaton /* extra information are

attached to each node: p is the offset to be inspected, m

is the set of already matched rules and c is the set of

candidate rules */

2. if (v.c is empty)

3. stop /* if no candidate rule, terminate the procedure */

4. v.p = select(v.c) /* select the next offset to inspect */

5. create all the possible branches of node v /* each branch

has a edge to it from v, with corresponding value */

6. for each rule r in v.c

7. if r has test relevant to v.p

8. if test for equality

9. add r into matched rule set if r can be matched after this

test, otherwise add r into candidate rule set of the

branch with corresponding value

10. if test for inequality

11. add r into matched rule set if r can be matched after this

test, otherwise add r into candidate rule set of all

branches except the branch with corresponding value

12. else /* all the test in r are irrelevant to v.p */

13. add r into candidate rule set of all branches

14. for each branch v’

15. Build(v’) /* recursively call Build for v’ */

}

Architecture Diagram

Figure 2: System architecture

The number of times that the high speed routers must be

accessed to classify a packet is a good indicator for the

processing speed of the signature tree-based packet

classification. In the following sections, we divide the hash

table into multiple partitions to exploit high speed routers

access and thus improve the performance. Here, we

introduce two properties about the universal character set

and the signature tree, which will be used later.

Property1: Characters in each universal character set can

be encoded as any bit strings as long as there are no two

characters with the same encoding.

Property 2: Nodes on the signature tree can be given any

IDs, as long as there are no two nodes with the same IDs at

the same level.

6. Justifications of Results

In the proposed pipeline, when an AFIFO becomes full, the

backpressure would prevent the upstream PM from

processing new active node IDs; therefore, the size of an

AFIFO might affect the throughput of the pipeline to a

certain extent[9]. Fig. 3 shows the relationship between

AFIFO size and the average number of time-slots needed for

exporting one classification result when a conventional hash

scheme is used. Curves in the figure show that the

throughput of the pipeline is not sensitive to AFIFO size.

When AFIFO size is larger than 8, the pipeline can achieve

stable throughputs regardless of the classifier types or the

value of. Further increasing AFIFO size cannot lead to

significant throughput improvement. Therefore, in the

remainder of our simulations, the sizes of AFIFOs are all set

to eight entries.

Paper ID: SUB152286 1129

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 3: Time-slots for generating one result versus

AFIFO size, when conventional hash scheme is used.

The proposed pipeline architecture has very strong

robustness. It significantly outperforms Hyper Cuts and

B2PC schemes for all tested classifiers[11]. Although part of

the performance improvement is gained from the parallelism

of the pipeline (in fact, the B2PC scheme also employs

many parallel bloom filters to accelerate its classification

speed), the use of parallelism does not increase the overall

storage cost thanks to the high partition efficiency provided

by the NCB_EG scheme. For ACL2, FW1, and IPC1, the

Hyper Cuts scheme requires more than 200 time-slots on

average to perform each packet classification.

7. Related Works

Many schemes have been proposed in literature to address

the best-match packet classification problem, such as Tries-

based schemes decision tree-based schemes TCAM-based

schemes and two-stage schemes.

Due to the high power consumption of TCAM, some

schemes are proposed to reduce it using one of the following

two ideas: 1) reducing the TCAM entries required to

represent a classifier by using range encoding or logic

optimization or 2) selectively activating part of the TCAM

blocks when performing a classification. Although these

schemes reduce the power consumption of TCAM, they

cannot be directly applied to multimatch packet

classification. To enable the multimatch packet classification

on TCAM, [1] proposes several schemes that allow TCAM

to return all matched entries by searching the TCAM

multiple times after adding a discriminator field in TCAM.

Consequently, the power consumption and processing time

increase linearly when the number of entries matching a

packet increases.

8. Conclusion and Future Works

In this paper, we model the multimatch packet classification

as a concatenated multistring matching problem, which can

be solved by traversing a flat signature tree. To speed up the

traversal of the signature tree, the edges of the signature tree

are divided into different hash tables in both vertical and

horizontal directions. These hash tables are then connected

together by a they work in parallel when packet

classification operations are performed[14]. A perfect hash

table construction is also presented, which guarantees that

each hash table lookup can be finished in exactly one

memory access. Because of the large degree of parallelism

and elaborately designed edge partition scheme, the

proposed pipeline architecture is able to achieve an ultra-

high packet classification speed with a very low storage

requirement. Simulation results show that the proposed

pipeline architecture outperforms Hyper Cuts and B2PC

schemes in classification speed by at least one order of

magnitude with a storage requirement similar to that of the

Hyper Cuts and B2PC schemes.

References

[1] Hyessook lim, lee, geumdam jin, jungwon Lee, Youngju

choi, and changhoon yim, “Boundary cutting for packet

classification”, vol. 22, no. 2, April 2014.

[2] M. Faezipour and M. Nourani, “Wire-speed TCAM-

based architectures for multimatch packet classification,”

IEEE Trans. Comput., vol. 58, no. 1, pp. 5–17, Jan. 2009.

[3] Snort, “A free lightweight network intrusion detection

system for UNIX and Windows,” 2013 [Online].

Available: http://www.snort.org

[4] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J.

Turner, “Algorithms to accelerate multiple regular

expressions matching for deep packet inspection,” in

Proc. ACM SIGCOMM, New York, NY, USA, 2006, pp.

339–350.

[5] H. J. Chao and B. Liu, High Performance Switches and

Routers. Hoboken, NJ, USA: Wiley-IEEE Press, 2007.

[6] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel,

“Fast and scalable layer four switching,” Comput.

Commun. Rev., vol. 28, pp. 191–202, Oct. 2007.

[7] B.Vamanan,G.Voskuilen, and T.N.Vijaykumar,

“Efficuts: optimizing packet classification for memory

and throughput,” in Proc. ACM SIGCOMM, New York,

NY, USA, 2010, pp. 207–218.

Paper ID: SUB152286 1130

