
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Advanced Data Compression Using J-bit Algorithm

Sarita Ambadekar
1
, Krushab Gandhi

2
, Jay Nagaria

3
, Rishabh Shah

4

Department of Computer Engineering, KJSIEIT, Ayurvihar Complex, Everard Nagar, Sion, Mumbai 400022

Maharashtra, India

Abstract: People tend to store a lot of files inside theirs storage. When the storage nears it limit, they then try to reduce those files size

to minimum by using data compression software. In this report we discuss a new algorithm for data compression, called j-bit encoding

(JBE). This algorithm will manipulates each bit of data inside file to minimize the size without losing any data after decoding which is

classified to lossless compression .The performance of this algorithm is measured by comparing combination of different data

compression algorithms.

Keywords: Data Compression, Lossy Compression, Lossless Compression, J-bit Algorithm

1. Introduction

A compression problem involves finding an efficient

algorithm to remove various redundancies from a certain

type of data. The general question to ask here would be, for

example, given a string s, what is the alternative sequence of

symbols which takes less storage space? The solutions to the

compression problems would then be the compression

algorithms that will derive an alternative sequence of

symbols which contains fewer number of bits in total, plus

the decompression algorithms to recover the original string.

How many fewer bits? It would depend on the algorithms

but it would also depend on how much the redundancy can

be extracted from the original data. Different data may

require different techniques to identify the redundancy and

to remove the redundancy in the data. There is no 'one size

fits all' solution for data compression problems. This gives

rise to a variety of data modeling and representation

techniques, which are at the heart of compression techniques

Morse code, invented in 1838 for use in telegraphy, is an

early example of data compression based on using shorter

code words for letters such as "e" and "t" that are more

common in English. Modern work on data compression

began in the late 1940s with the development of information

theory. In 1949 Claude Shannon and Robert Fano devised a

systematic way to assign code words based on probabilities

of blocks. An optimal method for doing this was then found

by David Huffman in 1951.In the mid-1970s, the idea

emerged of dynamically updating code words for Huffman

encoding, based on the actual data encountered. And in the

late 1970s, with online storage of text files becoming

common, software compression programs began to be

developed, almost all based on adaptive Huffman coding. In

1977 Abraham Lempel and Jacob Ziv suggested the basic

idea of pointer-based encoding. In the mid-1980s, following

work by Terry Welch, the so-called LZW algorithm rapidly

became the method of choice for most general-purpose

compression systems. It was used in programs such as

PKZIP, as well as in hardware devices such as modems.

Current image compression standards include: FAX CCITT

3 (run-length encoding, with code words determined by

Huffman coding from a definite distribution of run lengths);

GIF (LZW); JPEG (lossy discrete cosine transform, then

Huffman or arithmetic coding); BMP (run-length encoding,

etc.); TIFF (FAX, JPEG, GIF, etc.). Typical compression

ratios currently achieved for text are around 3:1, for line

diagrams and text images around 3:1, and for photographic

images around 2:1 lossless, and 20:1 lossy.

In today’s world Data Compression is indeed very much

needed. Data compression is used to reduce the size of the

file without altering its content, so that maximum content

can be stored in a compact space. Existing algorithms gives

compression up to some extent, but that’s not sufficient.

Main objective of this project is to make an algorithm,

which when used with existing algorithms, will increase the

overall compression ratio.

2. Review of Literature

Lossless data compression is used to compact files or data

into a smaller form. It is often used to package up software

before it is sent over the Internet or downloaded from a

website to reduce the amount of time and bandwidth

required to transmit the data
[5]

. Lossless data compression

has the constraint that when data is uncompressed, it must be

identical to the original data that was compressed
[1]

.

Graphics, audio, and video compression such as JPG, MP3,

and MPEG on the other hand use lossy compression

schemes which throw away some of the original data to

compress the files even further
[4]

. We will be focusing on

the lossless kind. There are generally two classes of lossless

compressors: dictionary compressors and statistical

compressors. Dictionary compressors (such as Lempel-Ziv

based algorithms) build dictionaries of strings and replace

entire groups of symbols
[2]

. The statistical compressors

develop models of the statistics of the input data and use

those models to control the final output
[3]

.

There are some well-known data compression algorithms. In

this paper we will take a look on various data compression

algorithms that can be used in combination with our

proposed algorithms
[1]

. Those algorithms can be classified

into transformation and compression algorithms.

Transformation algorithm does not compress data but

rearrange or change data to optimize input for the next

sequence of transformation or compression algorithm
[2]

Paper ID: SUB152218 1366

http://www.wolframscience.com/nksonline/index/names/search.cgi?SearchIndex=Shannon%2C%20Claude%20E.
http://www.wolframscience.com/nksonline/index/names/search.cgi?SearchIndex=Fano%2C%20Robert%20M.
http://www.wolframscience.com/nksonline/index/names/search.cgi?SearchIndex=Huffman%2C%20David%20A.
http://www.wolframscience.com/nksonline/index/names/search.cgi?SearchIndex=Lempel%2C%20Abraham
http://www.wolframscience.com/nksonline/index/names/search.cgi?SearchIndex=Lempel%2C%20Abraham
http://www.wolframscience.com/nksonline/index/names/search.cgi?SearchIndex=Ziv%2C%20Jacob
http://www.wolframscience.com/nksonline/index/names/search.cgi?SearchIndex=Welch%2C%20Terry%20A.

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Some of the important algorithms are as follows:

Run-length encoding

Run-length encoding (RLE) is one of basic technique for

data compression. The idea behind this approach is this: If a

data item d occurs n consecutive times in the input stream,

replace the n occurrences with the single pair nd
[2]

. RLE is

mainly used to compress runs of the same byte
[2]

. This

approach is useful when repetition often occurs inside data.

That is why RLE is one good choice to compress a bitmap

image especially the low bit one, example 8 bit bitmap

image.

Huffman Encoding

The Huffman encoding algorithm is an optimal compression

algorithm when only the frequency of individual letters are

used to compress the data. (There are better algorithms that

can use more structure of the file than just letter

frequencies.) The idea behind the algorithm is that if you

have some letters that are more frequent than others, it

makes sense to use fewer bits to encode those letters than to

encode the less frequent letters. For instance, take the

following phrase: "ADA ATE APPLE". There are 4 As, 1 D,

1 T, 2 Es, 2 Ps, 1 L, and 2 spaces. There are a few ways that

might be reasonable ways of encoding this phrase using

letter frequencies. First, notice that there are only a very few

letters that show up here. It would be silly to use chars, with

eights bits apiece, to encode each character of the string. In

fact, given that there are only seven characters, we could get

away with using three bits for each character! If we decided

to simply take that route, that would require using 14 * 3

bits, for a total of 42 bits (and some extra padding for the

sake of having correct bit-alignment since you have to use

an entire byte). That's not too bad! It's a lot better than the 8

* 14 = 112 bits that would otherwise be required.

But we can do even better if we consider that if one

character shows up many times, and several characters show

up only a few times, then using one bit to encode one

character and many bits to encode another might actually be

useful if the character that uses many bits only shows up a

small number of times!

The Lempel Zev Welch Algorithm

Dictionary based compression algorithms are based on a

dictionary instead of a statistical model [5]. A dictionary is a

set of possible words of a language, and is stored in a table

like structure and used the indexes of entries to represent

larger and repeating dictionary words. The Lempel-Zev

Welch algorithm or simply LZW algorithm is one of such

algorithms. In this method, a dictionary is used to store and

index the previously seen string patterns. In the compression

process, those index values are used instead of repeating

string patterns. The dictionary is created dynamically in the

compression process and no need to transfer it with the

encoded message for decompressing. In the decompression

process, the same dictionary is created dynamically.

Therefore, this algorithm is an adaptive compression

algorithm.

Arithmetic coding

In arithmetic coding, a message is encoded as a real number

in an interval from one to zero. Arithmetic coding typically

has a better compression ratio than Huffman coding, as it

produces a single symbol rather than several seperate

codewords. Arithmetic coding is a lossless coding technique.

There are a few disadvantages of arithmetic coding. One is

that the whole codeword must be received to start decoding

the symbols, and if there is a corrupt bit in the codeword, the

entire message could become corrupt. Another is that there

is a limit to the precision of the number which can be

encoded, thus limiting the number of symbols to encode

within a codeword. There also exists many patents upon

arithmetic coding, so the use of some of the algorithms also

call upon royalty fees. Arithmetic coding, is entropy coder

widely used, the only problem is its speed, but compression

tends to be better than Huffman (other statistical method

algorithm) can achieve
[6]

. This technique is useful for final

sequence of data compression combination algorithm and

gives the most for compression ratio

Compression Performances Measuring

Depending on the nature of the application there are various

criteria to measure the performance of a compression

algorithm. When measuring the performance the main

concern would be the space efficiency.The time efficiency is

another factor. Since the compression behavior depends on

the redundancy of symbols in the source file, it is difficulty

to measure performance of a compression algorithm in

general.

Following are some measurements used to evaluate the

performances of lossless algorithms.

Compression Ratio is the ratio between the size of the

compressed file and the size of the source file.

Compression Time is the time taken for the compression

and decompression should be considered separately. If the

compression and decompression times of an algorithm are

less or in an acceptable level it implies that the algorithm is

acceptable with respective to the time factor.

Comparing the Performance

The performances of the above discussed algorithms vary

according to the type of file, content of the file, compression

ratio, compression time etc. If an algorithm gives 20%

compression for a file, it may only 5% for some other file.

So there is no one specific algorithm for all data

compression needs. Therefore, all these factors are

considered for comparison in order to identify the best

solution. An algorithm which gives an acceptable saving

percentage within a reasonable time period for most of the

files is considered as the best algorithm.

Proposed Algorithm

J-bit encoding (JBE) optimizes input for other algorithm

[1].This is done by manipulating bits and give compressed

file as an input for the existing algorithms. The main idea of

this algorithm is to split the input data into two data where

the first data will contain original nonzero byte and the

second data will contain bit value explaining position of

nonzero and zero bytes [4]. Both data then can be compress

Paper ID: SUB152218 1367

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

separately with other data compression algorithm to achieve

maximum compression ratio.

Step-by-step Compression Process

 Read input per byte, can be all types of file

 Check whether bit is zero or non-zero

 If bit is non-zero copy it in the data I array and write “1”

in the temp array.

 If bits are zero simply copy a “0” in temp array.

 Repeat above steps till there are 8 bits in temp array.

 Once filled write the Byte value of those 8 bits in data II

array.

 Clear the temp array.

 Repeat above steps till end of file is reached.

Once done our other existing algorithms can be applied on

data II and data I(optional) which will further increase the

compression ratio. This further compressed output can be

stored as required and while retrieving can be opposite

process can be applied.

Step-by-Step Decompression Process:

While decompressing first decompress using existing

algorithm then apply the decompression process of the j-bit

algorithm which is given as follows-

 Read the input file.

 Read data II per bit.

 Determine whether read bit is '0' or '1'.

 If the bit is '1' then read and write data I to output, if the

bit is '0' then write zero byte to output.

 Repeat step 2-5 until end of file is reach.

The compression ratio provided depends on the content of

the file, type of the file and many other factors. The

following table gives the average compression ratio

provided by the above algorithms , by taking various types

of files of different inputs data and applying the above

algorithms.

Input file size: 100 bytes

Output file size (in bytes):
 Without j-bit With j-bit

RLE 60 54

LZW 80 34

ARI 83 92

As we can see from the above table j-bit gives best output

for LZW but the combination of compression algorithms to

be used depends on what data the file carries.

3. Conclusion

This topic discusses and confirms a data compression

algorithm that can be used to optimize other algorithm. This

algorithm gives better compression ratio when inserted

between run length encoding and arithmetic coding .Because

some files consist of hybrid contents (text, audio, video,

binary in one file just like document file), the ability to

recognize contents regardless the file type, split it then

compresses it separately with appropriate algorithm to the

contents is potential for further research in the future to

achieve better compression ratio. The next generation

campus wide architecture is a conversed architecture; it has

capability to provide voice, video, data triple play service

over a single conversed infrastructure, which requires a huge

amount of bandwidth and high data rate. Using our system it

is possible to reduce bandwidth consumption and eventually

reduce the cost.

References

[1] I Made Agus, Dwi Suarjaya,” A New Algorithm for Data

Compression Optimization”(IJACSA) International

Journal of Advanced Computer Science and

Applications, Vol. 3, No.8, 2012

[2] S.Gavaskar, Dr.E.Ramaraj, R.Surendiran, “A

Compressed Anti IP Spoofing Mechanism Using

Cryptography ,“ IJCSNS International Journal of

Computer Science and Network Security, VOL.12

No.11, November 2012 .

[3] Salomon, D. 2004. Data Compression the Complete

References Third Edition. Springer-Verlag New York,

Inc.

[4] Campos, A. S. E. Move to Front. Available:

http://www.arturocampos.com/ac_mtf.html (last accessed

July 2012).

[5] Campos, A. S. E. Run Length Encoding. Available:

http://www.arturocampos.com/ac_rle.html (last accessed

July 2012).

Paper ID: SUB152218 1368

