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Abstract: In this paper, a comparison of optimum solution between transportation and transhipment problem is discussed whose objec-

tive function is fractional and the objective is to minimize the total actual transportation cost to total standard transportation cost. here, 

the fractional transportation problem is converted to an equivalent fractional transhipment problem and then solved by using the me-

thod of fractional transportation problem and concluded that in some situations, fractional transhipment will be less expensive than 

fractional transportation by means of numerical example.  
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1. Introduction 
 

Transportation problem is a special class of linear program-

ming problem which deals with shipping of commodities 

from certain sources to various destinations. The objective of 

the transportation problem is to determine the shipping sche-

dule that minimize the total shipping cost or maximize the 

total profit which satisfies the supply and demand limits [1]. 

here, we are considering a class of transportation problem 

called linear fractional transportation problem. This was 

originally proposed by Swarup [3] and it had an important 

role in logistics and supply chain management for reducing 

cost and improving service. The linear fractional program-

ming problems originate from network models consisting of 

a finite number of nodes and arcs. These type of problems 

arise when we want to minimize the cost to time or maxim-

ize the profit to time ratio, in which fractional objectives 

include optimization of total actual transportation cost / total 

standard transportation cost, total return / total investment 

etc., In a transportation problem shipment of commodity 

takes place among sources and destinations. but, instead of 

direct shipments to destinations, the commodity can be 

transported to a particular destination through one or more 

intermediate points called transshipment. In brief, we are 

considering the transportation and transhipment problems in 

fractional case and comparing with direct shipment and 

shipment through intermediate points to give the best optimal 

solution for this problem. The paper is organized as follows : 

Section 2 details the linear fractional transportation problem 

with an example. In Section 3, the formulation of fractional 

transhipment problem is given. In Section 4, the conversion 

of fractional transportation problem to an equivalent frac-

tional transshipment problem is considered and then solved. 

Finally, Section 5 gives the conclusion.  

 

2. The Linear Fractional Transportation Prob-

lem 
 

Consider the following transportation problem:- 

𝑀𝑖𝑛 𝑧 =  
  𝑐𝑖𝑗 𝑥𝑖𝑗

𝑛
𝑗=1

𝑚
𝑖=1

  𝑑𝑖𝑗 𝑥𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=1

  

Subject to  

 𝑥𝑖𝑗
𝑛
𝑗=1 = 𝑎𝑖 ,  𝑥𝑖𝑗

𝑚
𝑖=1 = 𝑏𝑗 ,  𝑎𝑖

𝑚
𝑖=1 =  𝑏𝑗

𝑛
𝑗=1 , 𝑥𝑖𝑗  ≥

0, Where ai is ith source, bj is the jth destination, cij is the 

total actual transportation cost, dij is the total standard trans-

portation cost from ith to jth destination.  

 

In case, the variables  𝑢𝑖
′ , 𝑣𝑗

′  𝑎𝑛𝑑 𝑢𝑖
′′, 𝑣𝑗

′′ associated with the 

numerator and denominator of objective, as given in [4], 

where 𝑢𝑖
′  𝑎𝑛𝑑 𝑢𝑖

′′, i = 1, 2, ……m, are corresponding to 

supply constraints and 𝑣𝑗
′ , 𝑣𝑗

′′ , j = 1, 2, …n, are corresponding 

to demand constraints and defined as :  

 

 𝑢𝑖
′ +  𝑣𝑗

′ =  𝑐𝑖𝑗   ( i, j) ϵ J  

 𝑢𝑖
′′ +  𝑣𝑗

′′ =  𝑑𝑖𝑗 , ( i, j ) ϵ J  

Where J is the set of pairs of indices ( i, j ) of basic variable 𝑥𝑖𝑗 . 

The Reduced costs ∆𝑖𝑗
′  and ∆𝑖𝑗

′′  are defined as : 

∆𝑖𝑗
′ = 𝑐𝑖𝑗 − ( 𝑢𝑖

′ +  𝑣𝑗
′  ), i = 1, 2, …….m, j = 1, 2, …….n,  

∆𝑖𝑗
′′ =  𝑑𝑖𝑗   _ ( 𝑢𝑖

′′ +  𝑣𝑗
′′ ), i = 1, 2, …...m, j = 1, 2, ……n,  

Further, we define  

𝑈𝑖  𝑥  =  𝑢𝑖
′ − 𝑧𝑢𝑖

′′, i = 1, 2, …m,  

𝑉𝑗   𝑥  =  𝑣𝑗
′ − 𝑧𝑣𝑗

′′ , j = 1, 2, …..n,  

𝑍𝑖𝑗   𝑥  =  𝑈𝑖   𝑥  +  𝑉𝑗    𝑥  , i = 1, 2, ..., m; j = 1, 2, …, n,  

𝐶𝑖𝑗   𝑥  =  𝑐𝑖𝑗 − 𝑧𝑑𝑖𝑗 , i = 1, 2, ..., m; j = 1, 2, ……, n,  

∆𝑖𝑗   𝑥  =  𝐶𝑖𝑗   𝑥  − 𝑍𝑖𝑗    𝑥  , i=1, 2, .., m; j = 1, 2, , n 

It can be Expressed as ∆𝑖𝑗 − ∆𝑖𝑗
′ − 𝑧∆𝑖𝑗

′′ , i = 1, 2, ..., m; j= 1, 2, 

.., n,  

The optimum condition for linear fractional transportation 

problem state that a basic feasible solution is optimal if  

∆𝑖𝑗  ≥ 0, i = 1, 2, ….., m; j = 1, 2, ……, n,  

 

2.2 Numerical Example  

Min Z = 
9 𝑥11 +3 𝑥12 +5 𝑥21 +2 𝑥22 +2 𝑥31 +1𝑥32

5 𝑥11 +6 𝑥12 +2 𝑥21 +3 𝑥22 +4 𝑥31 +6 𝑥32
 

Subject to : 

𝑥11 +  𝑥12 = 50  
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𝑥21 +  𝑥22 = 40  
𝑥31 +  𝑥32 = 60  
𝑥11 +  𝑥21 + 𝑥31 = 70 

𝑥12 +  𝑥22 + 𝑥32 = 80 and 

 𝑥𝑖𝑗  ≥ 0 for i = 1, 2, 3, j = 1, 2, 3, 4  

As per [2] Table 1 

 D1 D2  

S1 

5   6   

50  30   20  

  9   3 

S2 

2   3   

40  40     

  5   2 

 4 6  

where the entries at the top left and bottom right corners of 

each cell represents dij and cij, we obtained the feasible solu-

tion and the values of xij are shown in the small rackets in 

table 1 and 

Min Z =  
9 ×30+ 3 ×20+5×40+1×60

5 ×30+ 6 ×20+2×40+6×60
 = 0.830 

According to following Table (II):-Table II 

 D1 D2  

S1 

5   6   
 𝑢1

′ = 0 

 𝑢1
′′ = 0 

 (30 –θ)   (20 +θ)  

  9   3 

S2 

2   3  0 
 𝑢2

′ = −4  

 𝑢2
′′ =  −3 

 40     

  5 3  2 

S3 

4  -1 6   
𝑢3
′  = -2 

𝑢3
′′ = 0 

 (θ)   (60-θ)  

-5  2   1 

 
𝑣1
′ = 9 

𝑣1
′′ = 5 

𝑣2
′ = 3 

𝑣2
′′ = 6 

 

Calculating ∆𝑖𝑗  for all empty cells, we have  

∆22 = 3 – ( 0.830 ) (0) = 3 

∆31  = -5 – ( 0.830 )( -1 ) = - 4.17  

Clearly, ∆31  is the negative, therefore 𝑥31  will enter into the 

basis. We take 𝑥31  = θ ( see table II ) then θ = 30, continuing 

in this way, we get the final transportation table III is:- Table 

III 

 D1 D2  

S1 

5  0 6   
𝑢1
′ = 0 

𝑢1
′′ = 0 

    50  

3  9   3 

S2 

2   3   
𝑢2
′ = −1 

𝑢2
′′ =  −3 

 10   30  

  5   2 

S3 

4   6  1 
𝑢3
′  = - 4 

𝑢3
′′ = −1 

 60     

  2 2  1 

 
𝑣1
′ = 9 

𝑣1
′′ = 5 

𝑣2
′ = 3 

𝑣2
′′ = 6 

 

 Min Z = 
3 x 50 + 5 x 10+ 2 x 30 + 2 x 60 

6 x 50 + 2 x 10 + 3 x 30 + 4 x 60
 = 0.584 

Calculating ∆𝑖𝑗  for all empty cells, we have  

∆11= 3 – ( 0.584 ) = 3 

∆32  = 2 – ( 0.584 ) = 1.416 

Since all ∆𝑖𝑗  ≥ 0. The solution is Optimal and Min Z = 0.584 

 

 

3. The Fractional Transhipment Problem 
 

Consider the Fractional Transhipment Problem as indicated 

below:- 

𝑀𝑖𝑛 𝑧 =  
  𝑐𝑖𝑗 𝑥𝑖𝑗

𝑚 +𝑛
𝑗=1

𝑚 +𝑛
𝑖=1

  𝑑𝑖𝑗 𝑥𝑖𝑗
𝑚 +𝑛
𝑗=1

𝑚 +𝑛
𝑖=1

  

Subject to  

 𝑥𝑖𝑗 − 𝑡𝑖
𝑚+𝑛
𝑗=1 =  𝑎𝑖 , 𝑥1𝑖 + 𝑥2𝑖 + ⋯ + 𝑥1−𝑖,𝑖 + 𝑥𝑖+1,𝑖 + ⋯ +

𝑥𝑚+𝑛,𝑖 =  𝑡𝑖 , ( i = 1, 2, ……..m) 

 𝑥𝑖𝑗  𝑚+𝑛
𝑖=1 − 𝑡𝑗 =  𝑏𝑗 , ( 𝑗 = 𝑚 + 1, …… . . 𝑚 + 𝑛 )  

𝑥𝑗1 + 𝑥𝑗2 + ⋯ + 𝑥𝑗 ,𝑗−1 + 𝑥𝑗 ,𝑗 +1 + ⋯ + 𝑥𝑗 ,𝑚+𝑛 =  𝑡𝑗  ( j = m + 

1, ……., m + n ) 

 𝑎𝑖  
𝑚

𝑖=1
=   𝑏𝑗  

𝑚+𝑛

𝑗=𝑚+1
  

 Where ai is i
th

 source, bj is the j
th

 destination, cij is the total 

actual transportation cost, dij is the total standard transporta-

tion cost from i
th

 to j
th

 destination, xij is the amount of goods 

shipped from the i
th

 terminal (Ti) to the j
th

 terminal (Tj) and 

xij will be equal to zero because no units will be shipped 

from a terminal to itself. Now, assume that at m terminals 

(T1, T2, ..., Tm), the total out shipment exceeds the total in 

shipment by amounts equal to a1, a2, ..., am respectively and 

at the remaining n terminals (Tm+1, Tm+2, ..., Tm+n), the total in 

shipment exceeds the total out shipment by amounts bm+1, 

bm+2, ..., bm+n respectively. If the total in shipment at termin-

als T1, T2, ..., Tm be t1, t2, ..., tm respectively and the total out 

shipment at the terminals Tm+1, Tm+2, ..., Tm+n be tm+1, tm+2, ..., 

tm+n respectively. 

 

4. Conversion of the Fractional Transportation 

Problem as Fractional Transhipment Prob-

lem 
 

By using the fractional transportation technique to solve the 

fractional transshipment model, we have to determine the 

unit cost of shipping the commodities through the transient 

nodes. In general, the shipping cost from one location to it-

self should be zero and the shipping cost from the source Si 

to the destination Dj should be the same as the shipping cost 

from Dj to Si, but that may change depending on the prob-

lem. However, the unit shipping cost from a source to anoth-

er source or from a destination to another destination is in 

general not given in the original transportation problem. So, 

to formulate the problem as a transhipment problem, we as-

sume that the commodities can pass through any one of the 

nodes in the network before they finally reach their destina-

tions. We suppose that the cost is the same for shipments in 

opposite directions and unit cost of shipments among the 

sources is 4/3 while among destination is 3/2. Here, the buf-

fer Stock is Rs.150. The transhipment problem [5] is thus 

changed into the following transportation Problem, as per 

tables ( I to V ) worked out below:-  

 

Table I 

 S1 S2 S3 D1 D2  

S1 

0   3   3   5   6   

200                

  0   4   4   9   3 

S2 

3   0   3   2   3   

190                

  4   0   4   5   2 
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S3 

3   3   0   4   6   

210                

  4   4   0   2   1 

D1 

5   2   4   0   2   

150                

  9   5   2   0   3 

D2 

6   3   6   2   0   

150                

  3   2   1   3   0 

 150 150 150 220 230  

Table II 
 S1 S2 S3 D1 D2  

S1 

0   3   3   5   6   

200        ϵ1      200  

  0   4   4   9   3 

S2 

3   0   3   2   3   

190     150      40     

  4   0   4   5   2 

S3 

3   3   0   4   6   

210           180   30  

  4   4   0   2   1 

D1 

5   2   4   0   2   

150  ϵ2      150        

  9   5   2   0   3 

D2 

6   3   6   2   0   

150  150              

  3   2   1   3   0 

 150 150 150 220 230  

 

To resolve degeneracy, the quantity 𝜖1 , 𝜖2  are allocated to 

unoccupied cells. 

Min Z =  

 

= 

0. 527 

Table III 

 S1 S2 S3 D1 D2  

S1 

0  -4 3  1 3   5  1 6   𝑢1
′ = 0 

𝑢1
′′ = 0 

 

 θ      ϵ1-θ      200  

-1  0 5  4   4 5  9   3 

S2 

3  1 0   3  2 2   3  -1 𝑢2
′ = 1 

𝑢2
′′ = −2 

 

    150      40     

-8  4   0 -1  4   5 -2  2 

S3 

3  -1 3  1 0  -3 4   6   
𝑢3
′ = −2 

𝑢3
′′ = 0 

          180   30  

-5  4 7  4 -2  0   2   1 

D1 

5   2  -1 4   0  -5 2  -5 𝑢4
′ = −2 

𝑢4
′′ = 1 

 

 ϵ
1
      150+θ        

  9 8  5   2 -2  0 2  3 

D2 

6   3  -1 6  1 2  2 0  -8 𝑢5
′ = −8 

𝑢5
′′ = 2 

 

 150              

  3 11  2 5  1 3  3 5  0 

 
𝑣1
′ = 11 

𝑣1
′′ = 4 

𝑣2
′ = −1 

𝑣2
′′ = 2 

𝑣3
′ = 4 

𝑣3
′′ = 3 

𝑣4
′ = 4 

𝑣4
′′ = 4 

𝑣5
′ = 3 

𝑣5
′′ = 6 

 

 

When calculating Δij, we have,  
Δ11 = -11 -(0.527) (-4)= -8.892 Δ33 = -2 - (0.527) (-3) = -0.419 

Δ12 = 5 - (0.527) (1) = 4.473 Δ42 = 8 - (0.527) (-1) = 8.527 

Δ14 = 5 - (0.527) (1) = 4.473 Δ44 = -2 - (0.527) (-5) = 0.635 

Δ21 = -8 - (0.527) (1) = -8.527  Δ45 = 2 - (0.527) (-5) = 4.635 

Δ23 = -1 - (0.527) (2) = -2.054 Δ52 = 11 -(0.527) (-1)= 11.527 

Δ25 = -2 - (0.527) (-1) = -1.473 Δ53 = 5 - (0.527) (1) = 4.473 

Δ31 = -5 - (0.527) (-1) = -4.473 Δ54 = 7 - (0.527) (-4) = 9.108 

Δ32 = 7 - (0.527) (1) = 6.473 Δ55 = 5 - (0.527) (-8) = 9.216 

Clearly, Δ11 enters the basis. Proceeding in this way, we get 

the following table ( IV )  

 

 

 

 
 

Table IV 

 S1 S2 S3 D1 D2  

S1 

0 
  

3 
 

1 3  -5 5 
 

1 6 
  𝑢1

′ = 0 

𝑢1
′′ = 0 

 
 ϵ’’+θ            200 - θ  

  0 5  4 -2  4 5  9   3 

S2 

3  5 0   3  -3 2   3  -1 𝑢2
′ = 1 

𝑢2
′′ = −2 

 
    150      40     

3  4   0 -3  4   5 -2  2 

S3 

3  3 3  1 0  -8 4   6   
𝑢3
′ = −2 

𝑢3
′′ = 0           180 - θ   30 + θ  

6  4 7  4 -4  0   2   1 

D1 

5  9 2  4 4   0  -3 2  0 
𝑢4
′ = −4 

𝑢4
′′ = −4 

 
       

150+ϵ1- θ 

 
  ϵ1 +θ     

13  9 10  5   2 -8  0 4  3 

D2 

6 
  

3 
 

-5 6 
 

-8 2 
 

-8 0 
 

-12 
𝑢5
′ = 3 

𝑢5
′′ = 6 

 
 150- θ      + θ        

  3 0  2 -8  1 -4  3 -6  0 

 
𝑣1
′ = 0 

𝑣1
′′ = 0 

𝑣2
′ = −1 

𝑣2
′′ = 2 

𝑣3
′ = 6 

𝑣3
′′ = 8 

𝑣4
′ = 4 

𝑣4
′′ = 4 

𝑣5
′ = 3 

𝑣5
′′ = 6 

 

Min Z = 
 3 x 200+5 x 40+2 x 180+1 x 30+2 x 150+0 x 150+ 3 x 150  

6 x 200+2 x 40+4 x 180+6 x 30+4 x 150+0 x 150+ 6 x 150  
 = 0. 527 

 

When calculating Δij, we have,  
Δ12 = 5 - 

(0.527) (1) = 

4.473 

Δ33 = 4 - 

(0.527) (-8) = 

8.216 
Δ13 = -2 - 

(0.527) (-5) 

=0.635 

Δ41 = 13 - 

(0.527) (9) = 

8.257 
Δ14 = 5 - 

(0.527) (1) = 

4.473 

Δ42 = 10 - 

(0.527) (4) = 

7.892 
Δ21 = 3 - 

(0.527) (5) = 

0.365 

Δ45 = 4 - 

(0.527) (0) = 4 Δ23 = -3 - 

(0.527) (-3) = 

-1.419 

Δ52 = 0 - 

(0.527) (-5) = 

2.635 
Δ25 = -2 - 

(0.527) (-1) = 

-1.473 

Δ53 = -8 - 

(0.527) (-8) = -

3.784 
Δ31 = 6 - 

(0.527) (3) = 

4.419 

Δ54 = -4 - 

(0.527) (-8) = 

0.216 
Δ32 = 7 - 

(0.527) (1) = 

6.473 

Δ55 = -6 - 

(0.527) (-12) = 

0.324 
Clearly, Δ53 enters the basis. So θ = 150, Hence the Final 

Table VI is : Table V 
 S1 S2 S3 D1 D2 

 

S1 

0   3  0 3  3 5  1 6   𝑢1
′ = 0 

𝑢1
′′ = 0 

 
 ϵ’’+150            50  

  0 3  4 2  4 5  9   3 

S2 

3  6 0   3  6 2  1 3   𝑢2
′ = −1 

𝑢2
′′ = −3 

 
    150         40  

5  4   0 3  4 2  5   2 

S3 

3  3 3  0 0   4   6   

𝑢3
′ = −2 

𝑢3
′′ = 0 

       ϵ 

 

  
70 

  
140 

 

6  4 5  4   0   2   1 

D1 

5  9 2  3 4  8 0   2  0 𝑢4
′ = −4 

𝑢4
′′ = −4 

 
          ϵ1 +150     

13  9 8  5 4  2   0 4  3 

D2 

6  0 3  -6 6   2  -8 0  -12 𝑢5
′ = −1 

𝑢5
′′ = 6 

 
       150        

4  3 2  2   1 0  3 -2  0 
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 𝑣1
′ = 0 

𝑣1
′′ = 0 

 

𝑣2
′ = 1 

𝑣2
′′ = 3 

𝑣3
′ = 2 

𝑣3
′′ = 0 

𝑣4
′ = 4 

𝑣4
′′ = 4 

𝑣5
′ = 3 

𝑣5
′′ = 6 

 

Min Z = 
 3 x 50+2 x 40+2 x 70+1 x 140+1 x 150+0 x 150 

6 x 50+3 x 40+4 x 70+6 x 140+6 x 150+0 x 150 
 = 0.270 

 

The Reduced costs are worked out as follows:-  
Δ12 = 3 – ( 0.270) (0) = 3 Δ41 = 13 – ( 0.270) ( 9) = 10.57 

Δ13 = 2 – ( 0.270) ( 3) = 1.19 Δ42 = 8 – ( 0.270) ( 3) = 7.19 

Δ14 = 5 – ( 0.270) ( 1) = 4.73 Δ43 = 4 – ( 0.270) ( 8) = 1.84 

Δ21 = 5 – ( 0.270) ( 6) = 3.38 Δ45 = 4 – ( 0.270) ( 0) = 4 

Δ23 = 3 – ( 0.270) ( 6) = 1.38 Δ51 = 4 – ( 0.270) ( 0) = 4 

Δ24 = 2 – ( 0.270) ( 1) = 1.73 Δ52 = 2 – ( 0.270) (-6) = 3.62 

Δ31 = 6 – ( 0.270) (3) = 5.19 Δ54 = 0 – ( 0.270) ( -8) = 2.16 

Δ32 = 5 – ( 0.270) ( 0) = 5 Δ55 = -2 – ( 0.270) ( -12) = 1.24 

Since all ∆𝑖𝑗  ≥ 0. The solution is Optimal and Minimum Z = 

0.270 

 

5. Conclusion 
 

The main reason to consider transhipment is that commodi-

ties are allowed to pass transiently through other sources and 

destinations before it ultimately reaches its designated desti-

nation. It therefore is capable of seeking the minimum-cost 

route between a source and a destination. Hence, by adopting 

linear fractional transportation method, we have compared 

the optimum solution of fractional transportation with frac-

tional transhipment problem and given that in some situa-

tions the transportation through intermediate points can be 

less expensive than direct shipment. This Method would be 

very beneficial in the working of reduction of cost.  
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