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Abstract: In wireless, satellite, and space communication systems, reducing error rate is critical. High bit error rates of the wireless 

communication system require employing various coding methods on the data transferred. Channel coding for error detection and 

correction helps the communication system designers to reduce the effects of a noisy transmission channel. The purpose of this paper is 

to study and investigate the performance of Reed-Solomon decoder that is used to decode the data stream in digital communication. In 

this paper, the proposed work is to implement the decoder of Reed-Solomon (RS) coding scheme on the platform of VHDL using 

algorithm. Implementation will be done on VLSI Hardware Description Language (VHDL) and results can be seen on Field 

Programmable Gate Array (FPGA). This paper reviews the Reed Solomon decoder performance over Xilinx package. 
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1. Introduction 
 

Nowadays, we live in a world where communications play 

an important role both in our daily lives and in their 

involvement in the economic and technological fields. We 

constantly need to increase the flow of transmission while 

maintaining and improving their quality. But without a 

concern of reliability, all improvement efforts would be 

futile because it would necessarily mean that some data are 

to be rebroadcast An error correcting code allows the 

correcting of one or several errors in a code word by adding 

redundant symbols to the information, otherwise called, 

control symbols. Different possible codes exist but in this 

document we will only deal with Reed Solomon codes 

because for the moment being, they represent the best 

compromise between effectiveness (symbols of parity added 

to the information) and complexity (coding difficulty). 

Reed-Solomon coding is a very efficient and popular 

Forward Error Correction technique discovered by Reed and 

Solomon in 1960[1].Reed-Solomon (RS) codes are among 

the most widely used block error-correcting codes in digital 

communication and storage systems [2] and are very 

Effective in correcting random symbol errors and random 

burst errors. Therefore they are applied in many systems 

such as storage devices, mobile communications, and digital 

Television/DVB, high-speed modems etc. RS codes are 

adopted by various Standards like DVBT, DVBS, DVB 

DSNG, DVB C, and IEEE 802.16 WI-MAX. 

 

The purpose of error correction coding can be expressed as 

increasing the reliability of data communications or data 

storage over a noisy channel, controlling errors so the 

reliable reproduction of data can be obtained, increasing the 

overall system’s signal-to-noise energy ratio (SNR), 

reducing noise effects within a system. The reed-Solomon 

error correction codes were firstly introduced in the paper 

“Polynomial codes over certain finite fields” in 1960 for 

burst error correction. [1]. These codes are non-binary 

systematic cyclic linear block codes. These codes work with 

symbols that consist of several bits. The mostly used symbol 

size for non-binary codes is 8-bits, or a byte. A systematic 

code generates codeword that contain the message symbols 

in unaltered form. The encoder used mathematical function 

to the message symbols in order to generate the redundancy, 

or parity symbols. The basic block diagram for 

communication system is shown in Figure.2 

 

 
Figure 1: Block diagram for communication system 

 

A. Types of error correction codes 

 

The block and convolution coding are two important classes 

of error control or channel control coding. Block codes work 

on fixed-size blocks (packets) of bits or symbols of 

predetermined size. Practical block codes can generally be 

decoded in polynomial time to their block length. 

convolution codes work on bit or symbol streams of 

arbitrary. There are many types of block codes, but among 

the classical ones the most notable is Reed-Solomon coding 

because of its widespread use on the Compact disc, the 

DVD, and in hard disk drives. Other examples of block 

codes include BCH, Hamming, Turbo, Turbo Product, 

LDPC, fountain codes and BICM codes. 

 

The rest of paper is organized as follows. This article is 

structured in six sections. Section II briefly review about 

Reed Solomon code. Section III gives literature review of 

reed Solomon code. Section IV provides conclusion. 

 

2. Reed Solomon Code 
 

RS code is short for Reed-Solomon encoder, which is a kind 

of non-binary BCH codes, and is particularly applicable in 

correcting burst errors. Reed Solomon codes have higher 

error correcting capability that any other codes have. The 

parameters of RS code are: 
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m= the number of bits per symbol 

n= the block length 

k = the uncoded message length in symbols 

(n- k) = the parity check symbols (check bytes) 

 t= the number of correctable symbol errors. 

 

Reed Solomon (RS) codes are a subset of BCH codes and 

also in a class of linear block codes. A RS code is specified 

as RS (n, k) with s-bit symbols. This means that the encoder 

takes k data symbols of s bits each and adds parity symbols 

to make an n symbol codeword. There are n – k parity 

symbols of s bit each. A RS decoder can correct up to t 

symbols that contain errors in a codeword, where 2t = n – k. 

Figure.1 shows a typical RS codeword which is also known 

as a systematic code. 

 

 
Figure 1: Typical RS Codeword 

 

RS codes are particularly suitable to correct burst errors 

whereas series of bits in the codeword are received in error. 

The RS algebraic decoding procedure can correct errors as 

well as erasures. An erasure occurs when the position of an 

error symbol is identified at the decoder by the external 

circuitry. In general, an RS decoder can detect and correct 

up to (t = r/2) incorrect symbols if there are (r = n-k) 

redundant symbols in the encoded message. One redundant 

symbol is used in identifying the precise value of that error. 

If the RS decoder has been instructed that a specific message 

symbol is in error, it only has to use one redundant symbol 

to correct that error and does not have to use an additional 

redundant symbol to determine the location of the error 2t 

erasures can be corrected if the locations of all the errors are 

given to the RS codec by the control logic of the system. 

 

3. Literature Review 
 

Channel coding is a widely used technique for the reliable 

transmission and reception of data. Generally systematic 

linear cyclic codes are used for channel coding. In 1948, 

Shannon introduced the linear block codes for complete 

correction of errors. Cyclic codes were first discussed in a 

series of technical notes and reports written between 1957 

and 1959 by Prange. This led directly to the work published 

in March and September of 1960 by Bose and Ray-

Chaudhuri the BCH codes [3]. In 1959, Irving Reed and Gus 

Solomon described a new class of error-correcting codes 

called Reed-Solomon codes. Originally Reed-Solomon 

codes were constructed and decoded through the use of 

finite field arithmetic [4], [5] which used nonsingular 

Vandermonde matrices. In 1964 Singleton showed that this 

was the best possible error correction capability for any code 

of the same length and dimension [6]. Codes that achieve 

this "optimal" error correction capability are called 

Maximum Distance Separable (MDS). Reed-Solomon codes 

are by far the dominant members, both in number and utility, 

of the class of MDS codes. MDS codes have a number of 

interesting properties that lead to many practical 

consequences. The generator polynomial construction for 

Reed-Solomon codes is the approach most commonly used 

today in the error control literature. This approach initially 

evolved independently from Reed-Solomon codes as a 

means for describing cyclic codes. Gorenstein and Zierler 

then generalized Bose and Ray-Chaudhuri's work to 

arbitrary Galois fields of size p m , thus developing a new 

means for describing Reed and Solomon's "polynomial 

codes" [7]. It was described that vector c is a code word in 

the code defined by g(x) if and only if its corresponding 

code polynomial c(x) is a multiple of g(x). So the 

information symbols could be easily mapped onto code 

words. All valid code polynomials are multiples of the 

generator polynomial. It follows that any valid code 

polynomial must have as roots the same 2t consecutive 

powers of α that form the roots of g(x). This approach leads 

to a powerful and efficient set of decoding algorithms. After 

the discovery of Reed-Solomon codes, a search began for an 

efficient decoding algorithm. In 1960, Reed and Solomon 

proposed a decoding algorithm based on the solution of sets 

of simultaneous equations. Though much more efficient than 

a look-up table, Reed and Solomon's algorithm is still useful 

only for the smallest Reed-Solomon codes. In 1960 Peterson 

provided the first explicit description of a decoding 

algorithm for binary BCH codes [8], His "direct solution" 

algorithm is quite useful for correcting small numbers of 

errors but becomes computationally intractable as the 

number of errors increases. Peterson's algorithm was 

improved and extended to non - binary codes by Gorenstein 

and Zierler (1961) [7], Chien (1964) [9], and Forney (1965) 

[10]. These efforts were productive, but Reed-Solomon 

codes capable of correcting more than six or seven errors 

still could not be used in an efficient manner. In 1967, 

Berlekamp demonstrated his efficient decoding algorithm 

for both non - binary BCH and Reed-Solomon codes [11]. 

Berlekamp's algorithm allows for the efficient decoding of 

dozens of errors at a time using very powerful Reed-

Solomon codes. The operation needed for original 

Berlekamp-Massey algorithm and modified Berlekamp-

Massey algorithm are similar except for the extra 

multiplications in the modified method and the division 

operation needed in the original method. The division 

operation needed in the original method required a table-

lookup to find an inverse element, which can be a tedious 

and time consuming process. In modified Berlekamp-

Massey algorithm, one extra reloaded register is used that 

stores syndromes codeword following the modified 

structure. So, VLSI structure of modified Berlekamp-

Massey algorithm is simple and regular and suitable for 

decoding of Reed-Solomon codes. In 1968 Massey showed 

that the BCH decoding problem is equivalent to the problem 

of synthesizing the shortest Linear Feedback Shift Register 

capable of generating a given sequence [12]. Massey then 

demonstrated a fast shift register-based decoding algorithm 

for BCH and Reed-Solomon codes that is equivalent to 

Berlekamp's algorithm. This shift register-based approach is 

now referred to as the Berlekamp-Massey algorithm. In 

1975 Sugiyama, Kasahara, Hirasawa, and Namekawa 

showed that Euclid's algorithm can also be used to 

efficiently decode BCH and Reed- Solomon codes [13]. 

Euclid's algorithm is a means for finding the greatest 

common divisor of a pair of integers. It can also be extended 

to more complex collections of objects, including certain 

sets of polynomials with coefficients from finite fields. 
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A. Forward Error Correction Code 

 

In communication, information and coding theory, error 

control technique is used for controlling errors in data 

transmission over unreliable or noisy communication 

channels to provide robust data transmission through 

imperfect channel by adding redundancy to the data 

according to predetermined algorithm. The redundancy 

allows the receiver to detect a limited number of errors that 

may occur anywhere in the message, and often to correct 

these errors without retransmission. Forward Error 

correction (FEC) is the key ingredient for improving 

reliability of modern digital communication and storage 

systems and to guarantee data integrity. FEC gives the 

receiver the ability to correct errors without needing a 

reverse channel to request retransmission of data, but at the 

cost of a fixed, higher forward channel bandwidth. FEC is 

therefore applied in situations where retransmissions are 

costly or impossible, such as when broadcasting to multiple 

receivers in multicast. Design of the FEC code determine 

maximum fractions of errors or of missing bits that can be 

corrected, so different forward error correcting codes are 

suitable for different applications. Designers have tradeoffs 

to consider when choosing a FEC code for a transmission 

system such as power, FEC complexity, and FEC 

performance, etc. The error correction codes, also known as 

Forward Error Correction (FEC) codes, allow the recovery 

of a certain amount of error during data transmission without 

having to resend the data itself, thus increasing the system 

transmission capacity [14]. The high transmission rate 

communication systems need high performance and low cost 

hardware implementations of error correction codes. The 

block code, one of the FEC code, adds a constant size 

redundancy and it is capable of correcting multiple errors 

[15]. Error correction codes provide various benefits such as 

larger communication links, power gain and inter-channel 

interference correction. 

 

In [16] authors, Reed-Solomon (RS) codes are widely used 

as forward correction codes (FEC) in digital communication 

and storage systems. Correcting errors of RS codes have 

been extensively studied in both academia and industry. 

However, for burst-error correction, the research is still quite 

limited due to its ultra-high computation complexity. In this 

brief, starting from a recent theoretical work, a low-

complexity reformulated inversion less burst-error 

correcting (RiBC) algorithm is developed for practical 

applications. Then, based on the proposed algorithm, a 

unified VLSI architecture that is capable of correcting burst 

errors, as well as random errors and erasures, is firstly 

presented for multi-mode decoding requirements. This new 

architecture is denoted as unified hybrid decoding (UHD) 

architecture. It will be shown that, being the first RS decoder 

owning enhanced burst-error correcting capability, it can 

achieve significantly improved error correcting capability 

than traditional hard-decision decoding (HDD) design. 

Which concludes that In this brief, a high-speed RiBC 

algorithm for RS code burst-error correcting, and a UHD 

architecture that can support three different decoding modes 

are proposed. Comparison results show that the UHD 

decoder can achieve enhanced capability of correcting long 

burst of errors with good hardware efficiency. 

 

In [17] authors, to reduce the complexity of algebraic soft-

decision decoding (ASD) of Reed–Solomon (RS) codes, re-

encoding and coordinate transformation can be applied. For 

an (n, k) code, the re-encoding was implemented as applying 

erasure decoding to the k most reliable code positions 

previously. Such re-encoding can occupy a significant part 

of the overall decoder area. In this brief, we propose to 

choose the first k positions and implement the re-encoding 

in the low-complexity Chase (LCC) ASD algorithm by 

systematic encoding, which can be done by simple constant 

multipliers. Moreover, novel schemes are developed to 

modify the following interpolation and code word recovery 

steps in the case that systematic symbols need to be flipped 

to form the test vectors in the LCC decoding. Without any 

performance loss, the proposed schemes can lead to 15.5% 

higher efficiency in terms of throughput-over-area ratio in 

the LCC decoder with eight test vectors for a (255, 239) RS 

code over GF(28) which conclude that to use systematic re-

encoding in the LCC decoder and developed novel schemes 

to accommodate the flipping of systematic code positions? 

Systematic re-encoding is much simpler than erasure re-

encoding, and the required modifications on the following 

decoding steps have small overhead. As a result, the 

proposed decoder can achieve much higher efficiency than 

prior designs. Our future work will exploit if systematic re-

encoding can be employed in general ASD decoders. 

  

In [18] authors, present an iterative soft-decision decoding 

algorithm for Reed–Solomon (RS) codes offering both 

complexity and performance advantages over previously 

known decoding algorithms. algorithm is a list decoding 

algorithm which combines two powerful soft-decision 

decoding techniques which were previously regarded in the 

literature as competitive, namely, the Koetter–Vardy 

algebraic soft-decision decoding algorithm and belief-

propagation based on adaptive parity-check matrices, 

recently proposed by Jiang and Narayanan. Building on the 

Jiang–Narayanan algorithm, he presents a belief-

propagation- based algorithm with a significant reduction in 

computational complexity. He introduces the concept of 

using a belief-propagation- based decoder to enhance the 

soft-input information prior to decoding with an algebraic 

soft-decision decoder. Which concludes that algorithm is 

based on enhancing the soft reliability channel information 

before passing them to an algebraic soft-decision decoding 

algorithm. This was achieved by deploying the Jiang and 

Narayanan algorithm, which runs belief-propagation on an 

adapted parity-check matrix. Using the Koetter–Vardy 

algorithm as the algebraic soft-decision decoding algorithm, 

algorithm has impressive coding gains over previously 

known soft-decision decoding algorithms for RS codes. By 

comparing with averaged bounds on the performance of ML 

decoding of RS codes, we observe that our algorithm 

achieves a near optimal performance for relatively short, 

high-rate codes. He introduced some modifications over the 

JN algorithm that resulted in better coding gains. He 

presented a low complexity adaptive belief-propagation 

algorithm, which results in a significant reduction in the 

computational complexity. The performance of our 

algorithm was studied for the cases when the interpolation 

cost of the algebraic soft-decision decoding algorithm is 

both finite and infinite. A small loss in coding gain results 

when using manageable interpolation costs. The coding gain 
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of the presented algorithm is larger for channels with 

memory. Algorithm could also be viewed as an interpolation 

multiplicity assignment algorithm for algebraic- soft 

decoding. 

 

In [19] authors, proposed a new area-efficient truncated 

inversion less Berlekamp-Massey architecture for the Reed-

Solomon (RS) decoder, where RS decoder is one of the 

forward error correction techniques. The area-efficient 

feature of the proposed architecture is obtained by truncating 

redundant processing elements in the key equation solver 

(KES) block using the BM algorithm. This increases the 

hardware utilization of the processing elements used to solve 

the key equation and reduces the hardware complexity of the 

KES block. The proposed TiBM architecture has the lowest 

hardware complexity compared with conventional KES 

architecture which concludes that area-efficient TiBM 

architecture and evaluated its performance for the RS 

(255,239) decoder design, which can correct up to eight bit 

error in one block. The TiBM architecture has very low 

complexity in comparison with the conventional KES 

architectures. TiBM architecture is well suited for high-

speed low-complexity RS decoder design. 

 

4. Conclusion 
 

A simple encoding and decoding algorithm for RS code is 

presented in this paper is based on the fact that the code 

word used in Euclid’s algorithm is a non-systematic RS 

code. It uses the recursive extension to compute the 

remaining unknown syndromes. Finally, the message 

symbols are thus obtained by only subtracting all known 

syndromes from the coefficients of the corrupted 

information polynomial. Reed-Solomon codes are used for 

error detection and correction for reliable communication. 

The encoder splits the incoming data stream into blocks and 

processes each block individually by adding redundancy and 

the decoder processes each block individually and it corrects 

errors by exploiting the redundancy present in the received 

data. This code can be implemented using VHDL language 

on Xilinx 13.1 and simulated on ISE simulator. The code is 

synthesized on Spartan 3 to compare the parameters related 

to parallel syndrome. Proposed Reed-Solomon encoder and 

decoder implemented on Spartan3 with parallel syndrome 

can save a lot of area and improves the speed. The 

performance of Reed-Solomon codes can be improved by 

using Euclidean Algorithm to solve Key equation. 
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