
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

State- Based Approach to Analyze the Reliability of

Component Based Software

Pooja Gupta
1
, Amanpreet Kaur Boparai

2

1Research Scholar, Chandigarh University, Gharuan-Mohali, Punjab, India

2Assistant Professor, Chandigarh University, Gharuan-Mohali, Punjab, India

Abstract: Software Reliability is defined as the “Probability of failure free operation of a computer program in a specified environment

for a specified time”. The conventional approaches which are used for software Reliability systems are black-box based. In this

approach, the software is considered as a whole without looking into its internal architecture there is an only interaction with the outside

world are modeled. Hence, this approach is insufficient to model the behavior of real software applications. Architecture-based analysis,

try to determine the behavior of software application by considering the nature of its part and their interaction. Most of the research has

been done in the area of architecture-based analysis to developing analytical models, and no effort cursed to establishing a framework

(model) and however no attempt has been made to know how this framework might be applied to real world applications. In this paper,

present an approach for determining the reliability of component-based software .Our Method is based on the state–Based approach to

analyze the reliability of component-based software. In state-based models the architecture is represented either by discrete time Markov

chain (DTMC) or a continuous time Markov chain (CTMC).

Keywords: Software Reliability, Reliability Model, Component-Based Software, Architecture based software Reliability, State-Based

model.

1. Introduction

In Component-Based Software Engineering, Software

system can be developed by selecting appropriate Off- The -

Shelf components (COTS) and then assembling then with

well defined software architecture [9].

Figure 1: Component Based software development

It is very difficult to achieving highly reliable software

because software is composed in a heterogeneous way, in

which each component has its own workload and according

to workload it has different failure.

Following are the major classes of Software Reliability:-

Black box reliability analysis: in which estimation of

software reliability based on failure observation from

testing. It is called black-box approach because internal

details of the software are not considered.

Software metric based reliability analysis: in which

reliability evaluation based on the static analysis of software

(e.g., LOC, complexity) or its development process and

conditions.

Architecture-based reliability analysis: in which reliability

evaluation based on software component reliability and the

system architecture (the way the system is composed of the

components). This approach is also called as white-box

approach or grey or component-based reliability estimation

(CBRE) [10].

There are several techniques and models have been proposed

to analyze the reliability of component based applications

[4]. A Software Reliability models are used to assess a

software product's reliability or to estimate the number of

latent defects when it is available to the customers.

Reliability models can be broadly classified into two

categories:- static models and dynamic models.

A static model uses other attributes of the project or program

modules to estimate the number of defects in the software. A

dynamic model, usually based on statistical distributions,

uses the current development defect patterns to estimate end-

product reliability.

Dynamic software reliability models, further classified into

two categories: those that model the entire development

process and those that model the back-end testing phase. The

former is represented by the Rayleigh model. The latter is

represented by the exponential model and other reliability

growth models (SRGM).

The Faults and failures are two important factors which are

generally exist in our software during the development

phases. Fault is also known as an error or bug which is

injected during the development phase. As the many user

use the software application so there is a probability that the

no of failure from fault increases. The no of fault increases if

Paper ID: SUB152186 1047

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

affect the reliability of the software. Because if software has

less no of errors then we can say that it is reliable software.

Due to this, the software technology has failed to steep in

various fields like in quality, productivity as compared to

hardware.

Software structure greatly impact on its reliability and

correctness has been highlighted in 1975-1976 by Parnas

and Shooman[7].There are several drawbacks of

conventional approach after that a average-sized software

application is developed using a “Divide and conquer”

technique in which several intermediate parts are integrated

after some time this technology generates a renew concept in

“architecture-based analysis” its aim is according to

component behavior and the architecture of the software

application characterize the reliability and performance

behavior of application. The main aim of architecture

analysis is that it can analyze how different components are

interacting with each other and how they are combined to

make a software system.

The existing architecture-based model is classified into three

broader categories viz. state-based, Path-based and additive

[11]

Figure 2: Classification of architecture-based software

reliability model

The layout of the paper is as follows. Section I introduced

the basic concept of software reliability. Section II

introduced the role of state-Based model in software

reliability. Section III describes Analysis and classification.

Section IV describes the metrics which are used for Software

Reliability. Section V presents conclusion

2. Role of State-Based Model in Software

Reliability

State-based model uses the control flow graph to represent

the software architecture and to examine reliability

analytically. There is an assumption that when control

transfer among the component it follow the Markov

property. To model the software architecture it uses the

Discrete-time Markov chain (DTMC) and Continuous-time

Markov Chain (CTMC).

In state-based model there is still a question that how this

model will be implemented in real world because on which

there is no perception that how input is accepted and output

is produced by the model. To apply these models in real

world some parameter values are needed these values

describe the architectural nature of an application and the

failure characteristic of each component. The architecture-

based models apply during the design phase whereas the

Black-box based approach applied during the testing phase

of the development life cycle. Based on these software

artifacts we gave a conclusion that which model is

appropriate to predict the reliability at each phase of the

software development cycle. It is the responsibility of

architecture-based approach is that which components

should be picked off the shelf, and which components

should be developed in house. Whether the components are

reliable or not all these aspects are handled by the design

phase of the development process. This technique will not be

useful for testing phase, but also be useful in applying those

applications of software which are in operational mode or

that has already been established.

3. Analysis and Classification of State-Based

Model

The Analysis of State-based model on the basis of

architecture and failure behavior

a) Architecture of the Application: This is the way in which

different components of the Software are interacts, and is

given by the intercomponent transition probabilities.

Mathematically the transition probability is given by:

𝑷 𝒙𝒏 − 𝟏,𝒙𝒏 = 𝑷{𝑿(𝒕𝒏) = 𝒙𝒏 | 𝑿(𝒕𝒏 − 𝟏) = 𝑿𝒏− 𝟏}

The architecture of the application can be designed by using

Discrete Time Markov chain (DTMC) and Continuous Time

Markov Chain (CTMC). In which the state transitions are

represented by transfer control among the components. The

DTMC characterized by its one-step transition Probability

matrix, P = [pij], where i and j are the two states. Since we

are considering a terminating application, the DTMC of

interest will have one or more absorbing states.

b) Failure Behavior of the component and interfaces:

Failure may occur during the execution of any component or

during the control transfer between two components. The

failure behavior of the components may be specified in

terms of the probability of failure (or reliability), time-

independent failure rate or time-dependent failure intensity.

It is clear that interface failures or failures that occur during

the transfer of control between two components should be

considered separately from individual component failures. In

this case we use many software metrics. The information of

the architecture of the application with failure behavior of

the component and interface with the component can be

combined in two different ways to predict the reliability and

application performance of the system. Following are the

two ways:

i. Hierarchical Method.

ii. Composite Method.

In the “hierarchical method,” an estimate of the application

reliability is obtained in two steps. In the first step, the

model representing the application architecture is solved to

obtain the architectural statistics of the application. The

architectural statistics include the mean and the variance of

the number of visits to each component, In the second step,

Paper ID: SUB152186 1048

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

the architectural statistics are combined with the failure

parameters of the components to obtain an analytical

reliability function. The hierarchical method describe the

concept of intracomponent in which same component are

independent of one another and it can lead to pessimistic

reliability estimate. Krishnamurthy and Mathur [12] resolve

the issue of intracomponent dependency.

Composite Method: The Composite method provides an

exact reliability estimate and it is not depend on the concept

of intracomponent dependency.

1. Hierarchical method of reliability analysis

2. Composite method of reliability analysis.

Figure 3: Analysis methods in state-based approaches.

4. Metrics Used for Software Reliability

The Reliability requirements for different categories of

software products may be different. A good reliability

measure should be observer-independent, so that different

people can agree on the degree of reliability a system has.

There are several metrics that are correlate with reliability as

follows:

 Rate of Occurrence Of Failure (ROCOF): ROCOF

measure the frequency of occurrence of failures. ROCOF

measure of a software product can be obtained by

observing the behavior of a software product in operation

over a specified time interval and then calculating the

value of ROCOF value.

 Mean Time To Failure (MTTF): MTTF is the time

between two successive failures averaged over a large no

of failures. To measure MTTF, we can record the failure

data for n failures. It is important to note that only run

time is considered in the time measurement.

 Mean Time To repair (MTTR): Once failure occurs, some

time is required to fix the error. It measure the average

time it take to track the error and causing failure and to fix

them.

 Mean Time Between failure (MTBF): it is the

combination of MTTR and MTTF.

 Probability Of Failure On Demand (POFOD): It

measure the likelihood of the system failing when a

service request is made. For example, a POFOD of 0.001

would mean that 1 out of every 1000 service request

would result in a failure.

 Availability: It measure how likely would the system be

available to use over a given period of time. Availability,

or more specifically, instantaneous availability, is

typically defined as the fraction of time during which a

component or system is functioning acceptably, i.e., the

uptime over the total service time

5. Related Work

Several Reliability models and estimation techniques have

been suggest to assess the reliability of Component based

applications.

Sherif Yacoub and Gokhale [4] discuss the discrete-event

simulation to analyze component-based applications. In

which program based procedure is used which gives the

inter-failure arrival time of a given component. This

approach assume the existence of control flow graph of a

program. It also assume constant execution time of

component interaction and ignores failures in component

interfaces and links.

After that Gokhale et al.[5] proposed a unification

framework. However the development of State-based

approach is ad hoc with little or no effort toward the

establishment of component so unification framework is

proposed which compare and contrast the models.

Michael R. Lyu and Zibin Zheng [6] uses a service-

oriented Architecture (SOA).The SOA is major software

framework for building complex distributed systems.

Reliability of the service-oriented system heavily depend on

the remote web services as well as the unpredictable internet

and they proposed a collaborative Reliability prediction

approach, which employs past failure data of other similar

user, without requiring real world web service invocations.

In large-scale real- world experiments are conducted and the

experimental results shows that our collaborative reliability

predictions approach obtain better reliability.

Swapna S.Gokhhale[7] introduces the various limitations

of software Reliability analysis. Like Modeling limitation

which discusses the limitations of models used for

architecture-based analysis. There are several problems arise

in modeling are concurrent execution in which state-based

model assume that only one component is executing at any

instant of time. The other limitations is Non- markov

transfer of control in which state-based model assume that

transfer of control follow only first-order Markov property.

Poor[8] proposed an approach in which component model is

used to represent the system as a combination of

components with transition probabilities. He does not

consider how components are interacting and how its

parameters are obtained. He only assumed that the analyst

will construct the model based on domain experience.

Krishnamurthy et al.[9] uses the CBRE technique to assess

the reliability of component-based applications. This

approach is based on the test information and test cases. In

which to run the test cases each execution path is defined. In

Paper ID: SUB152186 1049

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

which component interface fault is not considered because

our main consideration on the test cases but component

interface part is the main factor in reliability analysis of

component-based application.

6. Conclusion

At the first software engineering (SE) conference in 1968,

Doug McIlroy introduced the concept of software

components during his keynote speech, “Mass-Produced

Software Components.” Since 1968, components have

played a role in both SE research and practice. For example,

components have been an important part of software

architecture from its early days. In 1998, the International

Conference on Software Engineering introduced component-

based software engineering (CBSE) as a specific area within

SE at the first workshop on CBSE. CBSE aims to build

software from preexisting components, build components as

reusable entities, and evolve applications by replacing

components. This requires significant changes in the

development paradigm, from both technical and business

viewpoints. The Software reliability is a key part in software

quality. The Software reliability is defined as the probability

of failure-free operation in a defined environment for a

specified period of time. Reliability can be associated with

both hardware and software. The hardware Reliability can

easily be evaluated since hardware get wear out but in case

of software it be very difficult. Further, we used various

Reliability-models to predict the reliability of the system. So

at last, main purpose of this paper is to understand the

concept of software reliability using the state-based

approach.

References

[1] Gokhale,S.S,.Architecture-based software reliability

analysis: Overview and limitations. IEEE Transactions

on dependable and secure computing, 4(1),32-40, 2007.

[2] Eklund, P. Dealing with the complexity of CBSE-

Fundamental Environmental needs.

[3] Cortellessa, V., & Grassi, V. “A modeling approach to

analyze the impact of error propagation on reliability of

component-based systems”, in Springer Berlin

Heidelberg , (pp. 140-156) , 2007.

[4] Yacoub, S., Cukic, B., & Ammar, H. H. “A scenario-

based reliability analysis approach for component-based

software. Reliability”, IEEE Transactions on, 53(4),

465-480,2004.

[5] Reussner, R. H., Schmidt, H. W., & Poernomo, I.

H.“Reliability prediction for component-based software

architectures”. Journal of Systems and Software, 66(3),

241-252 , 2004.

[6] Zheng, Z., & Lyu, M. R.“ Collaborative reliability

prediction of service-oriented systems”. In Proceedings

of the 32nd ACM/IEEE International Conference on

Software Engineering-Volume 1 (pp. 35-44). ACM ,

2010.

[7] Gokhale, S. S., & Trivedi, K. S. “Analytical models for

architecture-based software reliability prediction: A

unification framework. Reliability” ,IEEE Transactions

on, 55(4), 578-590 , 2006.

[8] Koziolek, H., Schlich, B., & Bilich,.“A large-scale

industrial case study on architecture-based software

reliability analysis”. In Software Reliability Engineering

(ISSRE), 2010 IEEE 21st International Symposium on

(pp. 279-288). IEEE , 2010

[9] Xia, C., & Fu, A. “Component-Based Software

Engineering: Technologies, Quality Assurance

Schemes, and Risk Analysis Tools”. In Seventh Asia-

Pacific Software Engineering Conference, 2003.

[10] Khoshgoftaar, T. M., Allen, E. B., Hudepohl, J. P., &

Aud, S. J.”Application of neural networks to software

quality modeling of a very large telecommunications

system”. Neural Networks, IEEE Transactions on, 8(4),

902-909 , 1997.

[11] K. Goseva-Popstojanova and K. S. Trivedi,

“Architecture-based approach to reliability assessment

of software systems,” Performance Evaluation, vol. 45,

no. 2–3, June 2001.

[12] S. Krishnamurthy and A.P. Mathur, “On the Estimation

of reliability

[13] Shanmugam, L., & Florence, “A Comparison of

Parameter best estimation method for software

Reliability Models”.International Journal of Software

Engineering & Applications, 3(5) , 2012.

[14] Tyagi, K., & Sharma, “ Reliability of component based

systems: a critical survey”. ACM SIGSOFT Software

Engineering Notes, 36(6), 1-6. , 2011.

[15] Crnkovic, I., & Larsson, M. P. H. (Eds.).”Building

reliable component-based software systems”. Artech

House.2002

Paper ID: SUB152186 1050

