
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Development of New Algorithm for Finding Inverse

of Modular Multiplication

Dr. J. Thirumaran
1
, S. Raja

2

1Dean, Rathinam College of Arts & Science, Coimbatore-642021, India

2Assistant Professor, Rathinam College of Arts & Science, Coimbatore-642021, India

Abstract: The output of division of two integers in most of the cases is not integer in traditional arithmetic. However, in modular

arithmetic, (c/d) mod p is either integer if d and p are relatively prime. . Basic Arrays and their Properties are analyzed first, The

available algorithms are analyzed and MMI algorithm is proposed. The comparative Analysis of NEA vs. XEA are mad and complexity

Analysis of MMI Algorithm is also made.

Keywords: Modular multiplication, NMI, NEA, XEA, Algorithms

1. Introduction: Division of Two Integers

The output of division of two integers in most of the cases is

not integer in traditional arithmetic. However, in modular

arithmetic, (c/d) mod p is either integer if d and p are

relatively prime, or it does not exist if d and p are not co-

prime, i.e., if gcd(d, p) > 1. Analogous case exists in

traditional arithmetic: For instance, if dy = 1 and d = 0, then

there is no unique y that satisfies

0y = 1.

In this paper, we provide an Enhanced-Euclid algorithm

(NEA) that finds for two relatively prime integers p0 and p1

an integer number x, satisfying the equation p1x mod p0 = 1.

(1.1) This integer x is called a multiplicative inverse of p1

modulo p0 or, for short, a Modular Multiplicative Inverse

(MMI). However, if p0 and p1 are not relatively prime, then

the NEA finds a gcd(p0 , p1). The Extended- Euclid

algorithm (XEA) (Knuth, 1997) also finds a MMI of p0 and

p1 if gcd(p0 , p1) = 1. Otherwise, the XEA finds gcd(p0 , p1).

In this paper, we prove a validity of the NEA and provide its

analysis. The analysis demonstrates that the NEA is faster

than the XEA.

2. Basic Arrays and their Properties

Let us consider five finite integer arrays:

{pi}, {ci}, {tk }, {wk }, {zk }. (2.1)

Definition 2.1. Let {pi} and {ci} be integer arrays defined

according to the following generating rules:

given two relatively prime integers p0 and p1 such that p0 >

p1 ,

for i ≥ 1 while pi ≥ 2,

do pi+1 := pi−1 mod pi and ci := ×pi−1 /pi∗. (2.2)

Definition 2.2. Let for every k ≥ 1 {tk } be an arbitrary

array; let {wk } and {zk } be defined by the following

generating rules: if w0 , w1 , z0 and z1 are initially

specified,

then for every k ≥ 2,

wk := wk−1 tk−1 + wk−2 and zk := zk−1 tk−1 + zk−2 . (2.3)

Proposition 2.3. Let us consider a sequence of determinants

Dk := zk zk−1 , then for every k ≥ 1,

Dk = (−1)
k−1

 D1 . (2.4) Consider Dk and substitute in the left

column the values of wk and zk defined in (2.3).

After simplifications, it follows that Dk = −Dk−1 , then this

relation, if applied telescopically, implies (2.4).

Proposition 2.4. Let all three arrays {tk }, {wk } and {zk }

be integer, and

w0 := 1, z0 := 0, |z1 | := 1.

Proposition 2.3 implies that for every w1(−1)
k−1

 z1 zk is a

multiplicative inverse of wk−1 modulo wk . Indeed, since

D1 = −z1 , then (2.4) implies that

-wk zkk 1k-1 − z w = (1−1)
k
 z ,

Proposition 2.5. If for every 0 ≤ k ≤ r, tk := cr−k , then wk

:= pr−k , i.e.,

{wk } = {pi}R and {tk } = {ci}R , (2.6)

where the superscript R in (2.6) means that the arrays {ci}

and {pi} are written in reverse.

Thus p0 and p1 are seeds that generate the arrays

{pi}, {ci}, {tk } := {cr−k } and {wk } := {pr−k }.

Theorem 2.6. For every k = 1,... , r, (−1)k−1 z1zk is the

multiplicative inverse of pr−k+1 modulo pr−k , i.e., if (k is

odd and z1 = 1) or (k is even and z1 = −1),

then x := zk else x := pr−k − zk ;

if k := r and z1 = (−1)r−1, then x := zr , i.e., p1 zr = 1 mod

p0 . (2.7)

Proof follows from Propositions 2.3–2.5.

3. NEA for MMI

The proposed algorithm uses stack as a data structure. It

solves Eq. (1.1).

vars: r, L, M , S, t: all integer numbers, b: boolean,

proc FORWARD :

assign L := p0 , M := p1 , b := 0,

{r := 0, height of the stack, r is used only for the analysis of

the algorithm},

repeat t := ×L/M ∗, S := L − M t, b := 1 − b, {r := r + 1},

(3.1)

push t {onto the top of the stack}, L := M, M := S, (3.2)

until S = 1, (if S = 0, then gcd(p0 , p1) = t; no MMI)

Paper ID: SUB152179 977

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

proc BACKTRACKING :

assign S := 0; M := (−1)b (by (2.7) in Theorem 2.6),

repeat pop t {from the top of the stack};

L := Mt + S, S := M, M := L, (3.3)

until the stack is empty ; output x := L; {if x < 0, then x :=

x+p0 }.

Table 3.1: NEA in progress

p1=1973 p0=1777 196 13 1

Stack 1 9 15 —

151 136 15 1 0

Table 3.2: NEA algorithm with even number of columns

2013 1976 37 15 7 1

Stack 1 53 2 2 —

272 267 5 2 1 0

Example 3.1. Let p0 and p1 be relatively prime integers; let

us find an integer number x that is a MMI, i.e., satisfying the

equation p1 x mod p0 = 1 (1.1). Suppose that p0 = 1777 and

p1 = 1973. Table 3.1 shows the algorithm in progress. Since

the right-most element in the first row is equal one, hence

the MMI exists. The second row stores the stack and the left-

most element in the third row is equal to either x, if the

number of columns is even, or it is equal to p1 − x if the

number of columns is odd. Thus, in this example x =1973 −

151 = 1822. Indeed, 1777 × 1822 mod 1973 = 1.

Example 3.2. Let now p0 = 1976 and p1 = 2013, let us

determine an integer x that satisfies Eq. (1.1). Table 3.2

shows the algorithm in progress. Since the number of

columns is even, hence x = 272. Indeed, 1976 × 272 mod

2013 = 1.

Notice that the lengths of the stacks are very short in both

examples: we need to store only three and four elements,

respectively.

4. Complexity Analysis of MMI Algorithm

Let us consider four integer non-negative arrays: {pi} and

{ci} as they defined in (2.2), and {qk } and {dk } defined in

accordance with the rules:

dk :=

×qk−1

/qk ∗,

 (4.1)

pi+1 :=

pi−1 −

pici ,

qk+1 :=

qk−1 − qk

dk .

(4.2)

Here {ci} and {dk } are quotients; {pi} and {qk } are

remainders. It is clear from (2.2) and (4.2) that pi+1 := pi−1

− pici = pi−1 mod pi . Hence, both arrays {pi} and {qk } are

strictly decreasing and all terms of the corresponding arrays

{ci} and {dk } are positive integers.

Definition 4.1. {xj }s is a (s + 1)-dimensional vector,

consisting of first s + 1 terms of an array x0 , x1 ,..., xj−1 , xj

,.. ., i.e., {xj }s := (x0 , x1 ,... , xs−1 , xs).

Theorem 4.2. Consider {ci}r ≥ 1, {pi}s , {dk }s , {qk }s ≥ 1

and {pi}r ≥ 1. Let p0 = q0 , {ci}s ≤ {dk }s , i.e., for every j =

1,... ,s there is at least one j = l such that cl < dl ; then for

every 1 ≤ j ≤ s the following inequalities hold :

if 1 ≤ j ≤ l − 1, then pj ≥ qj else pj > qj . (4.3)

Proof. Assuming that the statement (4.3) holds for every i ≤

j − 1, let us demonstrate by induction that it also holds for i

= j.

Consider tj = dj − cj = ×qj−1 /qj ∗− ×pj−1 /pj ∗ ≤ ×pj−1 /qj

∗− ×pj−1 /pj ∗. (4.4) If j ≤ l − 1, then tj ≥ 0 else tj > 0.

Hence, (4.4) implies that if j ≤ l − 1, then pj ≥ qj else pj > qj .

Since p0 = q0 , therefore, (4.3) holds for every j ≤ s.

Consider a pair of relatively prime seeds p0 and p1 that

generates an array {ci}r = 1. Let us also consider another

pair of relatively prime seeds p0 and q1 that generates an

array {dk }s ≥ 1, i.e., such that not every term is equal to

one. Let r and s be the number of steps required respectively

to find the MMIs for the first and the second pair using

either the XEA or the NEA. This assumption implies that qs

= 1. Therefore, by Theorem 2.6 {pi}s ≥ {qk }s and ps > qs =

1. Hence, r > s.

Corollary 4.3. A pair of seeds that is required for a given p0

, which is the maximal number of steps for computation of a

MMI, generates an unary array of quotients, where every

components in {ci}r = 1. Thus, as it follows from (2.2) and

(4.3), this pair of seeds must generate the following array of

integer numbers: p2 := p0 − p1 , p3 := p1 − p2,..., pr := pr−2

− pr−1 = 1. For instance, the array of the Fibonacci numbers

{Fr+2 , Fr+1 ,... , F4 , F3 , F2 }

generates the former array where for every i = 0,... ,r pi :=

Fr+2−i

Remark 4.4. The pair p0 = Fr+2 , p1 = Fr+1 is not the only

one that generates (a) an unary array of quotients; (b) a

decreasing integer array with the rth remainder equal to one.

The following pairs of seeds have the same property {for all

non- negative integer numbers t and u}:

1. p0 = Fr+2 +tFr , p1 = Fr+1 +tFr−1, for t = 1, {pi}

= {L1, L2 ,..., Lr+1} is a sequence of the Lucas numbers 1,

3, 4, 7, 11, 18,...

2. p0 = tFr+2 + (1 − t)Fr−1 , t ≥ 1, p1 = tFr+1 + (1 − t)Fr−2 .

3. p0 = Fr+1 + tFr , t ≥ 1, p1 = Fr + tFr−1 .

4. p0 = (1 + t)Fr+2 + tFr−2 + uFr , p1 = (1 + t)Fr+1 + tFr−3

+ uFr−1 .

Here the Fibonacci numbers with zero and negative indices

are computed m−1 with the formula: F−m = (−1) Fm . For

all pairs, listed above, exactly r steps are required to find the

MMI. However, all these pairs are special cases of a pair of

seeds where p0 = bFr + Fr−1 and p1 = bFr−1 + Fr−2 . Then

for all 0 ≤ i ≤ r, pi = bFr−i + Fr−i−1 , pr−1 = b and pr = 1.

Let v = (1 − √5)/2 and w = (1 + √5)/2. Using a z-transform

approach we deduce that for all 0 ≤ k ≤r

pr−k = [(b − v)w k+ (w − b)v
k
 √5] (4.5)

Therefore, for a large r

pr−k √5 − (b − v)w
k
= (w − b)(−1)

k
 |v|k−−−→ 0, since |v| <

1. (4.6)

k→r

The relation (4.6) implies that for a large r,

p0 = [w
r
 (b − v)/5] [1 + o(w)]. (4.7)

Let z := maxb≥2 r(p0 , b).

Then

Paper ID: SUB152179 978

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

z ≈ max logw [b≥2 5p0 /(b − v)] = logw [5p0 /(5 − 1)] =

×logw p0 ∗[1 + o(p0)]. (4.8)

From (4.8) it follows that the height of a stack satisfies the

following inequality:

r ≤ (×logw p0 ∗)[1 + o(p0)] (Silverman and Tate, 1995).

(4.9)

Remark 4.5. Although this upper bound is achievable if p0

= bFr + Fr−1 and p1 = bFr−1 + Fr−2 , for this pair of seeds

the MMI can be computed explicitly and is equal to

(−1)r−1Fr .

Remark 4.6. If in the RSA public-key encryption (Rivest et

al., 1978), p0 = c × 10100 , then r ≤ 100/ log10 w + log10 c

or r ≤ 479 + log c. Over a 1,000 computer experiments

demonstrated that an average height of the stack is about

40% smaller than the upper bound in (4.9).

5. Extended-Euclid Algorithm (XEA)

XEA finds a multiplicative inverse of p1 modulo p0

provided that gcd(p0 , p1) = 1.

1. (X 1,X 2,X 3) := (1, 0, p0), (Y 1,Y 2,Y 3) := (0, 1, p1),

2. if Y 3 = 0 return X 3 =gcd(p0, p1); no inverse,

3. if Y 3 = 1 return Y 3 =gcd(p0 , p1), the multiplicative

inverse Y 2,

4. Q := ×X 3/Y 3∗, (5.1)

5. (T 1,T 2,T 3) := (X 1 − QY 1,X 2 − QY 2,X 3 − QY 3),

(5.2)

6. (X 1,X 2,X 3) := (Y 1,Y 2,Y 3), (5.3)

7. (Y 1,Y 2,Y 3) := (T 1,T 2,T 3),

8. goto 2 (Knuth, 1997; Silverman and Tate, 1992). (5.4)

5. Comparative Analysis of NEA vs. XEA

Both algorithms require the same number of steps, r, to

compute all quotients: the values of t in the FORWARD

procedure in (3.1), and Q in (5.1), respectively. In addition,

the NEA requires r more steps in the BACKTRACKING

procedure to compute the values of L in (3.3). Thus, the r

steps of the XEA require r divisions, 3r multiplications, 3r

long algebraic additions and 10r assignments, see (5.1)–

(5.4). The XEA uses 10 variables. Yet in both procedures

the NEA uses r divisions, 2r multiplications, 2r long

additions, 2r stack operations, (push and pop), and 8r

assignments, see (3.1)–(3.3). The NEA uses four integer

variables, one binary variable and, in addition, O(logw p0)

of memory to store the stack. Note that if a MMI does not

exist, then there is no necessity to use the

BACKTRACKING procedure in the NEA. In this case, the

NEA requires even fewer operations than the XEA: one

division, one multiplication, one addition, one push

operation and five assignments per every step. Yet the XEA

still requires the same number of operations per step as in

the case if a MMI does exist.

Thus, in overall the XEA uses more multiplications, more

additions, more assignments and twice more variables than

the proposed algorithm.

6. Conclusion

If both seeds p0 and p1 are chosen randomly, then the

probability that gcd(p0 , p1) = 1 is equal 6/π2 = 0.608

(Chesaro, 1881). Let us consider the following notations:

wxea -Worst-case specific complexity (per step) of XEA;

wnea -Worst-case specific complexity of NEA; axea -

Average-case specific complexity of XEA; anea -Average-

case specific complexity of NEA;

td , tm , ta , ts , tst -time complexities of the operations of

division, multi- plication, addition, assignment and stack

operations push and pop, respectively.

Then,Notice that

Thus,

wxea = td + 3tm + 3ta + 10ts, (7.1)

wnea = td + 2tm + 2ta + 8ts + 2tst , (7.2)

anea = (td + 2tm + 2ta + 8ts + 2tst) × 6/π2

+(td + tm + ta + 5ts + tst) × (1 − 6/π2). (7.3)

axea = wxea , and td ≈ tm ta ≈ ts ≈ tst . (7.4)

R := axea /anea = 2π2 /(3 + π2) = 1.533785. (7.5)

Therefore, the execution of the NEA requires significantly

less time than the execution of the XEA.

References

[1] Altintas Y. and Spence A. (1991), End milling force

algorithms for CAD systems. Annals of the CIRP 1991;

40(1), 31–34.

[2] Aytek A., (2009), Co-active neurofuzzy interference

system for evapotranspiration modelling. In Soft

Comput.volume (13), 691–700.

[3] Brown, F., Harris, M.G., and Other, A.N. (1998). Name

of paper. In Name(s) of editor(s) (ed.), Name of book in

italics, page numbers. Publisher, Place of publication.

[4] Buckley J., Hayashi Y., (1994), Can fuzzy neural

networks approximate continuous fuzzy functions? In

Fuzzy Sets and Systems, volume (61), 4352.

[5] Campatellia G., Scippa A. (2012), Prediction of milling

cutting force coefficients for Aluminum 6082-T4,

Procedia CIRP 1 (2012), 580 – 585.

[6] Castro J. R., Castillo O., and Other, (2009), Universal

Approximation of a Class of Interval Type-2 Fuzzy

Neural Networks Illustrated with the Case of Non-linear

Identification. In IFSA-EUSFLAT, 13821387.

[7] Cybenko G., (1989), Approximations by superpositions

of sigmoidal functions. In Mathematics of Control,

Signals, and Systems, volume (4), 303314.

[8] Fang N., Wu Q., (2009), A comparative study of the

cutting forces in high speed machining of Ti–6Al–4V.

Paper ID: SUB152179 979

