
International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 

Volume 4 Issue 3, March 2015 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Development of New Algorithm for Finding Inverse 

of Modular Multiplication 
 

Dr. J. Thirumaran
1
, S. Raja

2
 

 
1Dean, Rathinam College of Arts & Science, Coimbatore-642021, India 

 
2Assistant Professor, Rathinam College of Arts & Science, Coimbatore-642021, India 

 

 

Abstract: The output of division of two integers in most of the cases is not integer in traditional arithmetic. However, in modular 

arithmetic, (c/d) mod p is either integer if d and p are relatively prime. . Basic Arrays and their Properties are analyzed first, The 

available algorithms are analyzed and MMI algorithm is proposed. The comparative Analysis of NEA vs. XEA are mad and complexity 

Analysis of MMI Algorithm is also made. 
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1. Introduction: Division of Two Integers 
 

The output of division of two integers in most of the cases is 

not integer in traditional arithmetic. However, in modular 

arithmetic, (c/d) mod p is either integer if d and p are 

relatively prime, or it does not exist if d and p are not co-

prime, i.e., if gcd(d, p) > 1. Analogous case exists in 

traditional arithmetic: For instance, if dy = 1 and d = 0, then 

there is no unique y that satisfies 

0y = 1. 

 

In this paper, we provide an Enhanced-Euclid algorithm 

(NEA) that finds for two relatively prime integers p0 and p1 

an integer number x, satisfying the equation p1x mod p0 = 1. 

(1.1) This integer x is called a multiplicative inverse of p1 

modulo p0 or, for short, a Modular Multiplicative Inverse 

(MMI). However, if p0 and p1 are not relatively prime, then 

the NEA finds a gcd(p0 , p1 ). The Extended- Euclid 

algorithm (XEA) (Knuth, 1997) also finds a MMI of p0 and 

p1 if gcd(p0 , p1 ) = 1. Otherwise, the XEA finds gcd(p0 , p1). 

 

In this paper, we prove a validity of the NEA and provide its 

analysis. The analysis demonstrates that the NEA is faster 

than the XEA. 

 

2. Basic Arrays and their Properties 
 

Let us consider five finite integer arrays: 

{pi}, {ci}, {tk }, {wk }, {zk }. (2.1) 

 

Definition 2.1. Let {pi} and {ci} be integer arrays defined 

according to the following generating rules: 

given two relatively prime integers p0 and p1 such that p0 > 

p1 , 

for i ≥ 1 while pi ≥ 2, 

do pi+1 := pi−1 mod pi and ci := ×pi−1 /pi∗. (2.2) 

 

Definition 2.2. Let for every k ≥ 1 {tk } be an arbitrary 

array; let {wk } and {zk } be defined by the following 

generating rules: if w0 , w1 , z0 and z1 are initially 

specified,  

then for every k ≥ 2, 

wk := wk−1 tk−1 + wk−2 and zk := zk−1 tk−1 + zk−2 . (2.3) 

 

Proposition 2.3. Let us consider a sequence of determinants  

Dk := zk zk−1 , then for every k ≥ 1, 

Dk = (−1)
k−1

 D1 . (2.4) Consider Dk and substitute in the left 

column the values of wk and zk defined in (2.3). 

After simplifications, it follows that Dk = −Dk−1 , then this 

relation, if applied telescopically, implies (2.4). 

 

Proposition 2.4. Let all three arrays {tk }, {wk } and {zk } 

be integer, and 

w0 := 1, z0 := 0, |z1 | := 1. 

Proposition 2.3 implies that for every w1(−1)
k−1

 z1 zk is a 

multiplicative inverse of wk−1 modulo wk . Indeed, since 

D1 = −z1 , then (2.4) implies that 

-wk zkk 1k-1 − z w = (1−1)
k
 z , 

 

Proposition 2.5. If for every 0 ≤ k ≤ r, tk := cr−k , then wk 

:= pr−k , i.e., 

{wk } = {pi}R and {tk } = {ci}R , (2.6) 

where the superscript R in (2.6) means that the arrays {ci} 

and {pi} are written in reverse. 

Thus p0 and p1 are seeds that generate the arrays 

{pi}, {ci}, {tk } := {cr−k } and {wk } := {pr−k }. 

 

Theorem 2.6. For every k = 1,... , r, (−1)k−1 z1zk is the 

multiplicative inverse of pr−k+1 modulo pr−k , i.e., if (k is 

odd and z1 = 1) or (k is even and z1 = −1), 

then x := zk else x := pr−k − zk ; 

if k := r and z1 = (−1)r−1, then x := zr , i.e., p1 zr = 1 mod 

p0 . (2.7) 

Proof follows from Propositions 2.3–2.5. 

 

3. NEA for MMI 
 

The proposed algorithm uses stack as a data structure. It 

solves Eq. (1.1). 

vars: r, L, M , S, t: all integer numbers, b: boolean, 

proc FORWARD : 

assign L := p0 , M := p1 , b := 0, 

{r := 0, height of the stack, r is used only for the analysis of 

the algorithm}, 

repeat t := ×L/M ∗, S := L − M t, b := 1 − b, {r := r + 1}, 

(3.1) 

push t {onto the top of the stack}, L := M, M := S, (3.2) 

until S = 1, (if S = 0, then gcd(p0 , p1 ) = t; no MMI) 
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proc BACKTRACKING : 

assign S := 0; M := (−1)b (by (2.7) in Theorem 2.6), 

repeat pop t {from the top of the stack}; 

L := Mt + S, S := M, M := L, (3.3) 

until the stack is empty ; output x := L; {if x < 0, then x := 

x+p0 }. 

 

Table 3.1: NEA in progress 

p1=1973 p0=1777 196 13 1 

Stack 1 9 15 — 

151 136 15 1 0 

 

Table 3.2: NEA algorithm with even number of columns 

2013 1976 37 15 7 1 

Stack 1 53 2 2 — 

272 267 5 2 1 0 

 

Example 3.1. Let p0 and p1 be relatively prime integers; let 

us find an integer number x that is a MMI, i.e., satisfying the 

equation p1 x mod p0 = 1 (1.1). Suppose that p0 = 1777 and 

p1 = 1973. Table 3.1 shows the algorithm in progress. Since 

the right-most element in the first row is equal one, hence 

the MMI exists. The second row stores the stack and the left-

most element in the third row is equal to either x, if the 

number of columns is even, or it is equal to p1 − x if the 

number of columns is odd. Thus, in this example x =1973 − 

151 = 1822. Indeed, 1777 × 1822 mod 1973 = 1. 

 

Example 3.2. Let now p0 = 1976 and p1 = 2013, let us 

determine an integer x that satisfies Eq. (1.1). Table 3.2 

shows the algorithm in progress. Since the number of 

columns is even, hence x = 272. Indeed, 1976 × 272 mod 

2013 = 1. 

Notice that the lengths of the stacks are very short in both 

examples: we need to store only three and four elements, 

respectively.  

 

4. Complexity Analysis of MMI Algorithm 
 

Let us consider four integer non-negative arrays: {pi} and 

{ci} as they defined in (2.2), and {qk } and {dk } defined in 

accordance with the rules: 

 

dk := 

×qk−1 

/qk ∗, 

 (4.1) 

pi+1 := 

pi−1 − 

pici , 

qk+1 := 

qk−1 − qk 

dk . 

(4.2) 

 

Here {ci} and {dk } are quotients; {pi} and {qk } are 

remainders. It is clear from (2.2) and (4.2) that pi+1 := pi−1 

− pici = pi−1 mod pi . Hence, both arrays {pi} and {qk } are 

strictly decreasing and all terms of the corresponding arrays 

{ci} and {dk } are positive integers. 

 

Definition 4.1. {xj }s is a (s + 1)-dimensional vector, 

consisting of first s + 1 terms of an array x0 , x1 ,..., xj−1 , xj 

,.. ., i.e., {xj }s := (x0 , x1 ,... , xs−1 , xs ). 

 

Theorem 4.2. Consider {ci}r ≥ 1, {pi}s , {dk }s , {qk }s ≥ 1 

and {pi}r ≥ 1. Let p0 = q0 , {ci}s ≤ {dk }s , i.e., for every j = 

1,... ,s there is at least one j = l such that cl < dl ; then for 

every 1 ≤ j ≤ s the following inequalities hold : 

 

if 1 ≤ j ≤ l − 1, then pj ≥ qj else pj > qj . (4.3) 

 

Proof. Assuming that the statement (4.3) holds for every i ≤ 

j − 1, let us demonstrate by induction that it also holds for i 

= j.  

Consider tj = dj − cj = ×qj−1 /qj ∗− ×pj−1 /pj ∗ ≤ ×pj−1 /qj 

∗− ×pj−1 /pj ∗. (4.4) If j ≤ l − 1, then tj ≥ 0 else tj > 0. 

Hence, (4.4) implies that if j ≤ l − 1, then pj ≥ qj else pj > qj . 

Since p0 = q0 , therefore, (4.3) holds for every j ≤ s.  

 

Consider a pair of relatively prime seeds p0 and p1 that 

generates an array {ci}r = 1. Let us also consider another 

pair of relatively prime seeds p0 and q1 that generates an 

array {dk }s ≥ 1, i.e., such that not every term is equal to 

one. Let r and s be the number of steps required respectively 

to find the MMIs for the first and the second pair using 

either the XEA or the NEA. This assumption implies that qs 

= 1. Therefore, by Theorem 2.6 {pi}s ≥ {qk }s and ps > qs = 

1. Hence, r > s. 

 

Corollary 4.3. A pair of seeds that is required for a given p0 

, which is the maximal number of steps for computation of a 

MMI, generates an unary array of quotients, where every 

components in {ci}r = 1. Thus, as it follows from (2.2) and 

(4.3), this pair of seeds must generate the following array of 

integer numbers: p2 := p0 − p1 , p3 := p1 − p2,..., pr := pr−2 

− pr−1 = 1. For instance, the array of the Fibonacci numbers 

{Fr+2 , Fr+1 ,... , F4 , F3 , F2 } 

generates the former array where for every i = 0,... ,r pi := 

Fr+2−i 

 

Remark 4.4. The pair p0 = Fr+2 , p1 = Fr+1 is not the only 

one that generates (a) an unary array of quotients; (b) a 

decreasing integer array with the rth remainder equal to one. 

The following pairs of seeds have the same property {for all 

non- negative integer numbers t and u}: 

1. p0 = Fr+2 +tFr , p1 = Fr+1 +tFr−1, for t = 1, {pi} 

= {L1, L2 ,..., Lr+1} is a sequence of the Lucas numbers 1, 

3, 4, 7, 11, 18,...  

2. p0 = tFr+2 + (1 − t)Fr−1 , t ≥ 1, p1 = tFr+1 + (1 − t)Fr−2 . 

3. p0 = Fr+1 + tFr , t ≥ 1, p1 = Fr + tFr−1 . 

4. p0 = (1 + t)Fr+2 + tFr−2 + uFr , p1 = (1 + t)Fr+1 + tFr−3 

+ uFr−1 . 

 

Here the Fibonacci numbers with zero and negative indices 

are computed m−1 with the formula: F−m = (−1) Fm . For 

all pairs, listed above, exactly r steps are required to find the 

MMI. However, all these pairs are special cases of a pair of 

seeds where p0 = bFr + Fr−1 and p1 = bFr−1 + Fr−2 . Then 

for all 0 ≤ i ≤ r, pi = bFr−i + Fr−i−1 , pr−1 = b and pr = 1. 

Let v = (1 − √5)/2 and w = (1 + √5)/2. Using a z-transform 

approach we deduce that for all 0 ≤ k ≤r  

pr−k = [(b − v)w k+ (w − b)v
k
 √5] (4.5) 

 

Therefore, for a large r 

pr−k √5 − (b − v)w
k
= (w − b)(−1)

k
 |v|k−−−→ 0, since |v| < 

1. (4.6) 

 
k→r 

The relation (4.6) implies that for a large r, 

p0 = [w
r
 (b − v)/5] [1 + o(w)]. (4.7) 

Let z := maxb≥2 r(p0 , b). 

Then 
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z ≈ max logw [b≥2 5p0 /(b − v)] = logw [5p0 /( 5 − 1)] = 

×logw p0 ∗[1 + o(p0 )]. (4.8) 

 

From (4.8) it follows that the height of a stack satisfies the 

following inequality: 

r ≤ (×logw p0 ∗)[1 + o(p0 )] (Silverman and Tate, 1995). 

(4.9) 

 

Remark 4.5. Although this upper bound is achievable if p0 

= bFr + Fr−1 and p1 = bFr−1 + Fr−2 , for this pair of seeds 

the MMI can be computed explicitly and is equal to 

(−1)r−1Fr . 

 

Remark 4.6. If in the RSA public-key encryption (Rivest et 

al., 1978), p0 = c × 10100 , then r ≤ 100/ log10 w + log10 c 

or r ≤ 479 + log c. Over a 1,000 computer experiments 

demonstrated that an average height of the stack is about 

40% smaller than the upper bound in (4.9). 

 

5. Extended-Euclid Algorithm (XEA) 

XEA finds a multiplicative inverse of p1 modulo p0 

provided that gcd(p0 , p1 ) = 1. 

1. (X 1,X 2,X 3) := (1, 0, p0), (Y 1,Y 2,Y 3) := (0, 1, p1), 

2. if Y 3 = 0 return X 3 =gcd(p0, p1 ); no inverse, 

3. if Y 3 = 1 return Y 3 =gcd(p0 , p1 ), the multiplicative 

inverse Y 2, 

4. Q := ×X 3/Y 3∗, (5.1) 

5. (T 1,T 2,T 3) := (X 1 − QY 1,X 2 − QY 2,X 3 − QY 3), 

(5.2) 

6. (X 1,X 2,X 3) := (Y 1,Y 2,Y 3), (5.3) 

7. (Y 1,Y 2,Y 3) := (T 1,T 2,T 3), 

8. goto 2 (Knuth, 1997; Silverman and Tate, 1992). (5.4) 

 

5.  Comparative Analysis of NEA vs. XEA 
 

Both algorithms require the same number of steps, r, to 

compute all quotients: the values of t in the FORWARD 

procedure in (3.1), and Q in (5.1), respectively. In addition, 

the NEA requires r more steps in the BACKTRACKING 

procedure to compute the values of L in (3.3). Thus, the r 

steps of the XEA require r divisions, 3r multiplications, 3r 

long algebraic additions and 10r assignments, see (5.1)–

(5.4). The XEA uses 10 variables. Yet in both procedures 

the NEA uses r divisions, 2r multiplications, 2r long 

additions, 2r stack operations, (push and pop), and 8r 

assignments, see (3.1)–(3.3). The NEA uses four integer 

variables, one binary variable and, in addition, O(logw p0 ) 

of memory to store the stack. Note that if a MMI does not 

exist, then there is no necessity to use the 

BACKTRACKING procedure in the NEA. In this case, the 

NEA requires even fewer operations than the XEA: one 

division, one multiplication, one addition, one push 

operation and five assignments per every step. Yet the XEA 

still requires the same number of operations per step as in 

the case if a MMI does exist. 

 

Thus, in overall the XEA uses more multiplications, more 

additions, more assignments and twice more variables than 

the proposed algorithm. 

 

 

 

 

6. Conclusion 
 

If both seeds p0 and p1 are chosen randomly, then the 

probability that gcd(p0 , p1 ) = 1 is equal 6/π2 = 0.608 

(Chesaro, 1881). Let us consider the following notations: 

 

wxea -Worst-case specific complexity (per step) of XEA; 

wnea -Worst-case specific complexity of NEA; axea -

Average-case specific complexity of XEA; anea -Average-

case specific complexity of NEA; 

 

td , tm , ta , ts , tst -time complexities of the operations of 

division, multi- plication, addition, assignment and stack 

operations push and pop, respectively. 

 

Then,Notice that 

Thus, 

wxea = td + 3tm + 3ta + 10ts, (7.1) 

wnea = td + 2tm + 2ta + 8ts + 2tst , (7.2) 

anea = (td + 2tm + 2ta + 8ts + 2tst ) × 6/π2 

+(td + tm + ta + 5ts + tst ) × (1 − 6/π2). (7.3) 

axea = wxea , and td ≈ tm ta ≈ ts ≈ tst . (7.4) 

R := axea /anea = 2π2 /(3 + π2 ) = 1.533785. (7.5) 

Therefore, the execution of the NEA requires significantly 

less time than the execution of the XEA. 
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