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degree are calculated. For a gradient computation, first gray 

scale image is filtered to obtain „x‟ and ‘y’ derivatives of 

pixels. After calculating „x, y’ derivatives (Ix andIy), the 

magnitude and orientation of the gradient is also computed: 

 𝐺 =  𝐼𝑥2 + 𝐼𝑦2 And Ɵ = 𝑎𝑟𝑐𝑡𝑎𝑛
𝐼𝑥

𝐼𝑦
 

 

Then image is split to local area called cell area, which is 

composed of 16×16 pixel square. Each pixel calculates a 

weighted vote for an edge orientation histogram channel 

based on the orientation of the gradient element centered on 

it, and the votes are accumulated into orientation bins over 

local spatial regions that we call cells. Cell can be either 

rectangular or radial. In the next step an edge histogram is 

built using edge degree and the strength calculated in the 

previous step. Gradient strength vary over the wide range of 

owing to local variations in illumination and foreground-

background contrast, so effective local contrast 

normalization turns out to be essential for good 

performance. Different normalization schemes are evaluated 

and most of them are based on grouping cells into larger 

spatial blocks and contrast normalizing each block 

separately. Normalization introduces better invariance to 

illumination, shadowing, and edge contrast. It is performed 

by accumulating a measure of local histogram energy over 

local groups of cells that we call blocks. The result is used to 

normalize each cell in the block. Typically each individual 

cell is shared between several blocks, but its normalization is 

block dependent and thus different. The final descriptor is 

then the vector of all components of the normalized cell 

responses from all of the blocks in the detection window. 

 

6. Experiment Result 
 

The human detection is constructed via a method for 

classifying individual images region. It is divided into 

training and testing phases is used to make a binary classifier 

which gives human or non-human decisions for input image 

windows. The testing phase uses the classifier to perform a 

dense multi-scale scan reporting human decisions at each 

location of the testing images. The overview of training and 

testing phases is provided in figure (1). 

 

There are several notable findings in this work. HOG is 

affected by gradient quality, the choice of number of bins, 

normalization method and so on. In order to improve the 

performance, strong edge information is needed. Also 

gradient should be calculated at the finest available scale in 

pyramid layer when HOG can give fine orientations on the 

other hand, strong local contrast normalization produces 

good result. Overlapping cells sizes are an important 

component in raising accuracy. The overlapping scheme 

makes each cell normalized several times with respect to 

different local supports. In processing, each cell appears four 

times with different normalizations. The cell size has an 

impact on the quantity of information. For pedestrian 

detection, the cell size which approximates human part-

template size gives the better performance, such as detection 

rate raise from 83.45% (8×8 cell) to 98.26% (16×16 cell) in 

training data set. 

 

 

 

7. Conclusion 
 

This work has described a complete framework for the 

problem of detecting objects in images and videos. The 

proposed approach builds upon ideas in machine learning, 

computer vision and image processing to provide a general, 

easy to use and fast method for pedestrian detection. Our 

main contribution is the development of robust images 

feature sets for object detection tasks. And also proposed 

feature set based on well normalized grids of gradient 

orientation histograms. These features provide some 

invariance to shifts in object location and changes in shape 

and good resistance to changes in illumination and 

shadowing, background clutter and camera view point. For 

increasing detection rate, capturing fine detail with 

unsmoothed gradients and fine orientation voting, strong 

normalized and overlapping blocks are used. The descriptors 

do not involve any arbitrary thresholding of edges and they 

are relatively fast to compute. 

 

Our analysis and experiments show that it is possible to 

inexpensively estimate features at a dense set of scales by 

extrapolating computations carried out expensively, that is 

improved detection accuracy has been accompanied by 

decreased computational costs. And the system has moderate 

memory consumption. 
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