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dynamics, presented with illustrations derived from the 

Matlab graphs program. The conclusions, derived from the 

numerical simulations, are resumed in section5. 

 

2. Mathematical Model 
 

As any infection disease model, the total population is 

divided into epidemiological subgroups, we consider in this 

model, four disease-state compartments:  susceptible 

individuals (S),  people who can catch the disease; exposed 

individuals (E) are people who have come into contact with 

the disease but are not yet infective or infectious, infective 

individuals (I), people who have the disease and can 

transmit the disease; recovered individuals (R) people who 

have recovered from the disease.  We assume that an 

individual can be infected only through contacts with 

infectious individuals and that immunity is permanent. 

The parameters used in the model considered are identified 

by: 

 

  is the rate of contact.  It is defined as the average 

number of effective contacts with other individuals  

(susceptible) per infective unit time; 

  is the rate at which the exposed individuals 

become infective or infectious; 

  is the rate at which the infectious individuals 

recover  per unit time; 

  is the birth and death rate. 

 

We consider the tuberculosis model developed by I.K. 

Dontwi1 [1]. The dynamics of the model are governed by 

the following system of differential equations subject to 

non-negative initial conditions 
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We also denote by N (t) the total number individuals at time 

t and is given by 

 

( ) ( ) ( ) ( ) ( )N t S t E t I t R t      

    

As mechanism of control, we use treatment of the infected 

individuals. We represent this action by a control u into 

the model (1) that for mathematical reason is taken as 

Lebesgue measurable function. The control u represents the 

rate at which infectious individuals are treated at each time 

period. 

 

We assume that all infected individuals that we treat are 

transfered directly to the removed class.  The mathematical 

system with control is given by the nonlinear differential 

equations 
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With (0) 0S  , (0) 0I  , (0) 0E  , and (0) 0R  are 

given. 

 

3. Optimal Control Problem 
 

Our goal in this optimal control problem is to find the best 

strategy in terms of efforts in treatment that would 

minimize the number of people who die from Tuberculosis 

while at the same time minimizing the cost of treatment of 

the population, considering the initial population sizes of all 

four classes, S(0),  E(0) , I (0) and R(0) given. Naturally, 

there are various ways of expressing such a goal 

mathematically. In this paper, for a fixed terminal time ft , 

we consider the following objective function: 

2

0

( ) ( ( ) ( ))
2

ft

A
J u I t u t dt                          (3) 

Where A>0 represents the weight constant of the control 

and time respectively. We seek an optimal control 
*u such 

that 

                
  
J(u* ) = min J (u) :u Î U{ }                                 (4) 

 
Where U is the set of admissible controls defined by 

 

  ( ) :0 1, 0, fU u t u t t       

With u  is measurable. 

 

Pontryagin’s Maximum Principal converts (2), (3) and (4) 

into a problem of minimizing a Hamiltonian, defined by 
4
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Where if  is the right side of the differential equation of 

the 
thi  state variable. 

 

By applying t h e  Pontryagin’s maximum p r i n c i p l e  [2], 

we obtain the following theorem: 

 

Theorem 1 Given an optimal control 
*u  an optimal 

terminal time ft , and solutions 
* * *, ,S I E and 

*R of the 

corresponding state system, there exists an adjoint vec to r  

 1 2 3 4, , ,      satisfying 
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 With the transversality conditions 

 

         1 2 3 4( ) ( ) ( ) ( ) 0f f f ft t t t        

 

Furthermore, the optimal control 
*u  is given by 
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Proof. The adjoint equations and transversali ty conditions 

can be obtained by using Pontryagin’s Maximum Principle 

such that 
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The optimal control 
*u can be solve from the optimali ty 

condition, 

                             0
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By the bounds in the control U, it is easy to obtain 
*u in the 

form of (6). 

 

4. Numerical Simulations 
 

The optimality system is solved using an iterative method [16]. 

Numerical algorithm presented below is a semi-implicit finite 

difference method. 

We discretize the interval 0, ft t  at the points 0it t ih   

( 0,1,..., )i n ,where h  is the time step such that 

n ft t , [11]. Next, we define the state and adjoint 

variables 

1 2 3 4( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )S t E t I t R t t t t t   ; And the 

control ( )u t  . 

In addition, the algorithm we used proceeds as follows: 

 

   Algorithm 2 

 

 Choose initial guess of the state variables, the adjoint 

variables and the control; 

 Forward solving of the state system; 

 Backward solving of the adjoint system;  

 Update the control using the characterization (6); 

 

The following parameters and initial values are used for 

the simulation, which we have taken from [1]: 

     

The period of the treatment efforts is 250 days 

 Initial conditions: 

(0) 300, (0) 400, (0) 12, (0) 2S E I R    

 Parameter values: 

0,00875    0,5   0,1666    0,5853  

 The weight constant of the control: 100A   

 

In figure 1, we remark that in absence of treatment the 

number I of infectious individuals with Tuberculosis 

increases in the first 50 days to grow highly after.  

       

Whereas, in presence of treatment, the number I of 

individuals infectious decreases from the first day, in 

addition the number of individuals I infectious with TB at 

the final time 250ft   days is 1400 infection in the case 

without control and 0 infection with control. 

 

 
Figure 1: The infected group with and without control 

 

Figure 2, gives a representation of the optimal control 
*u for 

the treatment representing the effort to treat actively infected 

individuals with drug-resistant TB, in order to reduce the 

number of infected individual. 
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Figure 2:  The control 
*u  

 

5. Conclusion 
 

In search for the possible way of eradicating tuberculosis, 

there is the need to address the issue of the mechanism of the 

transmission of the disease. Many communicable diseases as 

Tuberculosis have been modeled using differential equations. 

The purpose of this work was to give an optimal control 

strategy considering a treatment program in order to reduce 

tuberculosis infections because there is a need to detect new 

cases as early as possible so as to provide early treatment for 

the disease. In our work, a control has been introduced in our 

state system representing drug-resistant TB with aim to 

minimize the number of infectious individuals. The numerical 

simulations show that this implementation of the control has a 

positive impact on the reduction of infectious individuals, 

which confirm the effectiveness of the approach. 
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