
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

A High Performance Parallel Router for DMFBs

Prasanta Kr. Roy
1
, Suman Shaw

2

1, 2Siliguri Institute of Technology, Siliguri – 734009, West Bengal, India

Abstract: In this present era, design of digital micro-fluidic biochips (DMFBs) is a challenging area of research interest. The source-

target routing is a crucial problem in a DMFB. In this paper, we propose a high performance linear-time based routing algorithm to

route multiple droplets at the same time (Latest Arrival Time) with special emphasis on collision avoidance satisfying the underlying

constraints. Here we consider a number of droplets with a single source-target pair for each droplet (2-pin network). The major goal is

to route all droplets concurrently with optimized latest arrival time and reduced cell utilization. The algorithm is based on Breadth-

First-Search [14] with a little modification in order to reduce CPU utilization.

Keywords: Microfluidics, Biochip, Routing, Algorithm and Complexity

1. Introduction

Recently DMFB technology has gained much attention due to

the increasing advancements in micro-fabrication and micro-

electromechanical systems (MEMS). It can perform

necessary biological tasks (such as clinical diagnosis and

DNA sequence analysis) on a single small integrated system

(Lab-on-a-Chip [6]) and thus provides design flexibility,

higher sensitivity, comparatively smaller size and lower cost.

The underlying technology also provides comparatively

reduced sample size, reagent volume and power consumption

by micromanipulation of discrete fluid particles (droplets).

The movement of droplets is controlled by the principle of

electro-wetting-o-dielectric [10]. In a DMFB, an array of

electrodes is placed in between two parallel glass plates

where the top plate and the bottom plate is applied a ground

voltage and high voltage, respectively. Each parallel plate

electrode pair is considered as a unit cell. The movement of a

droplet from one cell to its neighboring cell is controlled by

applying proper voltage to the bottom plate. The application

of voltage may vary according to the need of droplet

movement from one electrode to the other, and the overall

process is controlled by a processor with pre-determined

clock frequency to determine the velocity of movement [12].

Recently, a coplanar digital microfluidic system [7] has been

introduced which have no top plate. Because of their digital

characteristic, any operation on droplets can be performed

with a set of library operations (VLSI standard library). The

control of a droplet can be accomplished by applying a

sequence of preprogrammed electric signals (Actuation

sequences) [5]. Therefore, a DMFB can be designed by

applying a hierarchical cell-based design methodology. Thus,

once strong CAD frameworks are ready, a large scale

complex DMFB can be designed as done in VLSI. However,

CAD research for DMFB design has started very recently. A

top down design methodology for a DMFB is proposed in

[12], which mainly consists of architecture level synthesis

and geometry-level synthesis. The geometry-level synthesis

consists of module placement and droplet routing. Module

placement determines the location of each module in order to

minimize the chip area or response time. During droplet

routing, the transportation path of each droplet is determined

to avoid any unexpected mixture satisfying all the design

constraints. As in the module placement, a cell can be used to

transport different droplets during different time intervals

(time-multiplexing), which increases the complexity of

routing. One of the major goals of droplet routing is

routability as in VLSI [17], while satisfying timing constraint

and maximizing fault tolerance [6]. [12] describes the

synthesis procedure of DMFB which involves optimization

of certain cost functions under some resource constraints

.Area optimization as well as resource sharing is essential for

easier subsequent phases during placement of cells.

Typically, in droplet routing, the optimization of throughput,

time and resource utilization is the most crucial aspect.

Section 2 describes the related works based on the literature

survey. In section 3, we focus on the preliminary concepts of

droplet routing. Section 4 discusses the proposed approach

along with an example. Section 5 covers the complexity

analysis of the proposed algorithm. In section 6, we

summarize the experimental results based on some standard

benchmarks and finally section 7 provides the concluding

remarks.

2. Related Works

Nowadays, optimization of ever increasing complex design

of DMFB has become a critical area of research [11].

Designers are continuously trying to improve DMFB

integration in order to optimize the basic goals such as

throughput, time and resource utilization.

Recently, droplet routing is a crucial issue to enhance the

performance for biochip design automation. Several routing

mechanisms have been proposed so far. [3] describes a graph

coloring approach in which the control of droplet movement

over the electrodes was defined by direct addressing of the

micro-controller control unit. An acyclic graph was

constructed based on the movement time of droplets and the

coloring was done based on the parallel routing of droplets.

[16] also uses a direct addressing mechanism along with a

graph clique model for mapping of the droplet routing

problem. The optimal partitioning of the clique model is used

to optimize the droplet routing time. An integer linear

programming (ILP) based approach was proposed in [9]

which explored the use of direct addressing mode in biochip

Paper ID: SUB151895 255

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

routing problem. In [4], dynamic reconfigurability of the

microfluidic array is exploited during run-time. The proposed

method starts with an initial placement technique. During

module placement phase, a series of 2-D placement

configurations is obtained in different time spans. Then

appropriate routing paths are determined to complete droplet

routing. To find the ultimate solution the given problem was

decomposed into several sub-problems based on their initial

placement and then each sub-problem was solved

sequentially. A high performance droplet routing mechanism

was proposed in [2] using a grid based representation.

Initially, the proposed algorithm checks for those droplets

which can be routed without any obstacle or blockage due to

other droplets (routing by bypassibility) and then they are

arranged for concurrent routing without considering the

blockages. Routing of the remaining droplets is considered in

presence of blockage and a concession zone was introduced

to ascertain feasibility of the routing. Finally, the

optimization phase is done by applying a compaction based

algorithm. The network flow based method was proposed in

[8]. The proposed method was based on non-intersecting

bounding box technique. Firstly the bounding box of each net

was determined and then a non-intersecting set of bounding

boxes were chosen to route first. The min-cost max-flow

algorithm was used for routing of the remaining nets. The

concept of stalling was used in the A* search algorithm [1].

The algorithm used a graph representation to differentiate the

state of the source-target pairs at different times. Then the A*

search algorithm was used to choose the optimal path

between source-target pairs. A pin-constraint based biochip

design was proposed in [13] to optimize the number of

control pins by proper modeling of assays and their

operations. This involves scheduling of the bio assays and

paths for net routing. [15] also proposed a partition based

mechanism for pin constraint based design.

3. The Routing Task

Recently, DMFB routing is a crucial area of research interest

due to increasing complexity of biochips. The major goal is

to find an optimal path between source(s)-target(s) pair to

transport a droplet while satisfying the underlying

constraints. The DMFB routing task is very similar to VLSI

routing where a set of wires need to be connected under

certain design rules. Though DMFB routing differs from

VLSI routing in the following manners:

 In DMFB routing, multiple droplets can share the same

cell during different time intervals [1, 4] (Time Division

Multiplexing).

 Stalling of a droplet, if needed, at a particular cell is

allowed in DMFB routing.

 DMFB routing needs 3-D spacing by underlying

constraints.

Typically, a droplet routing problem in DMFBs can be

configured in terms of a 2-D grid array (Figure 1). Each

droplet is associated with a source-target pair. The goal is to

route all the droplets concurrently, if feasible, from its source

location to its target location. Since multiple droplets are

routed in parallel, they may intersect or overlap with each-

other. To avoid this undesirable behavior, fluidic constraint

rules [2] must be introduced. The movement of droplets is

done in time multiplexed manner to optimize their

reachability at the target cells. Due to the overall routing task

is done in parallel; there can be unwanted mixtures of

droplets if the minimum spacing is not maintained between

them. Though, in some cases merging of droplets is required

(3-terminal nets).

Suppose we have two droplets Di(Xi(t),Yi(t)) and

Dj(Xj(t),Yj(t)) initially at time t. They must not be located

adjacent or diagonally adjacent to each-other in order to

avoid mixing. Therefore, at any instant of time t, either |Xi(t)

– Xj(t)| ≥2 or |Yi(t) – Yj(t)| ≥2 must be satisfied. This

constraint is known as Fluidic constraint [2].

 Static constraint: |Xi(t) – Xj(t)| ≥2 or |Yi(t) – Yj(t)| ≥2

 Dynamic constraint: |Xi(t+1) – Xj(t)| ≥2 or |Yi(t+1) – Yj(t)|

≥2 Or |Xi(t) – Xj(t+1)| ≥2 or |Yi(t) – Yj(t+1)| ≥2

4. Proposed Approach

All the methods discussed in Section 2 can perform

concurrent routing only for those droplets whose paths are

clear (i.e. no blockage can occur between source-target

routing paths). The routing for remaining droplets can be

done in a sequential manner. In this paper, we propose a

parallel routing approach for all droplets (whether blocked or

cleared). Considering a EWOD model, we summarize our

proposed algorithm as follows;

 Concurrent routing of all droplets satisfying the fluidic

constraints.

 Finding the most significant path in order to optimize the

latest arrival time.

 Assignment of priority, by means of their distance function

(Manhattan Distance), to each droplet so that in case of a

collision, the higher priority droplet can be routed first and

the lower priority droplet is in waiting (stalling of droplet)

state until the path is clear.

 Backtracking also can be done when more than one same

priority droplets cause a collision.

4.1. The Algorithm

 Before Routing Starts:

1. Set-up floor [x, y].

2. If blocks present then mention location of blocked cells.

3. For each cell Cij in the Floor add reference of its adjacent

cell (i.e. C.NORTH, C.SOUTH, C.EAST and C.WEST) in

it. If any of the adjacent cells are blocked or absent then

mark its reference as absent.

4. Place droplets on the floor at its respective source position

sequentially. If any droplet is found to being placed at the

same/adjacent position of any other droplet, register that

droplet as failed. Don‟t place that Droplet.

5. Nearby droplets are clustered/grouped using k-mean

algorithm [19]. Each Droplet is assigned priority based on

the number of droplets in its cluster.

6. For each droplet find a path using Modified_BFS () from

its source to target location. If no path can be found then

droplet cannot be routed. Register that droplet as failed and

kill it.

Paper ID: SUB151895 256

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

7. Thread priority is assigned in decreasing order with respect

to the path length of the droplet.

8. For each droplet, if it is alive then start routing using

Path_Route().

9. Wait till all the droplets reaches its target then print

“routing complete”.

 Path_Route():

Let us assume the pre-calculated path is stored in an array

“step” of length not more than x*y.

1. Initialize i  0 , count  1, count1 1

2. Until droplet position not equal to target repeat

2.1. If Move_Ahead() returns successful then wait for
the next clock signal and then go back to 2.

2.2. Else if returns unsuccessful then check around the

position step[i+1]. Assign t  priority of the lowest

priority droplet responsible for the collision around

step[i+1].

2.3. If this droplet priority is less than t then

2.3.1. Check if i > 0 and if this droplet can go 1

step backwards then move the droplet

backwards 1 step using Move_Back().

count1 count1+1.

2.3.2. Else try to make an alternate path. If

alternate path cannot be found the move

back and try to find alternate path again.

Loop 2.3.2 until alternate path is found.

2.4. Else if droplet priority is equal to t then

2.4.1. Assign tt  priority of the lowest path length

droplet around step[i+1].

2.4.2. If this droplet path length is less than tt then

2.4.2.1. Check if i > 0 and if this droplet can

go 1 step backwards then move the

droplet backwards 1 step. count1

count1+1.

2.4.2.2. Else try to make an alternate path. If

alternate path cannot be found the

move back and try to find alternate

path again. Loop 2.4.2.2. until

alternate path is found.

2.4.3. Else if droplet path length is equal to tt then

2.4.3.1. If this droplet has the lowest droplet

ID among all the droplets around step[i+1] then

2.4.3.1.1. Check if i > 0 and if this

droplet can go 1 step

backwards then move the

droplet backwards 1 step.

count1 count1+1.

2.4.3.1.2. Else try to make an

alternate path. If alternate

path cannot be found the

move back and try to find

alternate path again. Loop

2.4.3.1.2. until alternate

path is found.

2.4.3.2. Else keep droplet at step[i] and

count  count+1.

2.4.3.3. End if

2.4.4. Else keep droplet at step[i] and count 

count+1.

2.4.5. End If

2.5. Else keep droplet at step[i] and count  count+1.

2.6. End If

2.7. If count is divisible by 4 then

2.7.1. Try to make an alternate path. If alternate

path cannot be found the move back and try

to find alternate path again. Loop 2.6.1.

until alternate path is found.

2.7.2. Increment count by one.

2.8. Else if count1 is divisible by 4 then

2.8.1. Try to make an Make_Alternate_Path(). If

alternate path cannot be found then move

back and try to find alternate path again at

next clock. Loop 2.7.1. until alternate path

is found.

2.8.2. Increment count1 by 1

2.9. End If

3. End Loop

4. If droplet has reached target position then register

droplet as reached and pick up droplet from floor.

5. End

 Make_Alternate_Path() :

1. Make copy of main floor excluding the droplets but

keeping the blocks as virtualfloor.

2. Find all the droplets around step[i+1] and mark all the cells

around those droplets including the position of the droplet

as blocked.

3. For each cell Cij in virtualfloor add reference of its

adjacent cell (i.e. C.NORTH, C.SOUTH, C.EAST and

C.WEST) in it. If any of the adjacent cells are absent or

blocked then mark its reference as absent.

4. Try to make a path from the current position to the target

using BFS and overwrite the pre-calculated path from

step[i] to target with the new found path around the

collision causing higher priority droplet.

5. If the alternate path is successfully discovered then discard

the duplicate floor and return successful.

6. Else discard the duplicate floor and return unsuccessful.

7. End

 Move_Ahead() :

1. Check if step[i+1] is available i.e. no droplet is present

around step[i+1] excluding itself.

2. If available then place droplet at that position, increment i

and return successful.

3. Else return unsuccessful.

4. End If

5. End

 Move_Back() :

1. Check if step[i-1] is available i.e. no droplet is present

around step[i-1]excluding itself.

2. If available then place droplet at position step[i-1],

decrement i and return successful.

3. Else return unsuccessful.

4. End If

5. End

 Modified_BFS():

Paper ID: SUB151895 257

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

1. Initialise Queue  Ø

2. N  x*y (total number of cells)

3. Initialise all cells as white. Set d ∞ and π  NIL

4. Set colour of source as grey. d 0 & π NIL

5. Enqueue  source cell

6. Loop till Queue is not empty

6.1. cell  dequeue()

6.2. for all the cells v present adjacent to cell(i.e. north,

east, west, south), if v.colour is white then

6.2.1. set v.colour  grey

6.2.2. set v.d  cell.d + 1

6.2.3. v.π  cell

6.2.4. Enqueue  v

6.3. cell.colour  black

7. end loop

8. Make the path using Print-path() algorithm and return

successful. If “path not found” then return unsuccessful.

9. End

 Print-path():

1. if target cell.π = NIL then return “path not found”

2. Initialize stack top = -1

3. Loop until cell.π = NIL

3.1. Push into stack cell

3.2. cellcell.π

4. end loop

5. loop until stack is not empty

5.1. mm+1

5.2. step[m]stack.pop

6. end loop

7. assign the rest of the array step as NIL.

8. return successful

Hence, all the droplets are routed in parallel and the

maximum timestamp (Latest Arrival Time) and overall cells

utilization has been considerably reduced.

4.2. An Example

Considering a 8×8 grid with 3 source-target pairs (2-pin net)

for 3 droplets (Figure 1), the proposed algorithm works as

follows;

S1 source position (3,0) target position (2,7) clustered with

itself due to k-mean algorithm hence drop priority = 1 and

path length = 8

S2 source position (2,7) target position (2,0) clustered with

itself due to k-mean algorithm hence drop priority = 1 and

path length = 7

S3 source position (6,3) target position (0,5) clustered with

itself due to k-mean algorithm hence drop priority = 1 and

travel priority = 6

They choose the optimal path to their target and routing

starts. The color associated with each source pair reflects the

routing path of that droplet towards its target.

Figure1: Routing of a 2-pin net considering 3 source-target pairs

Step 1, 2: no collision occurs, all droplets moves forward

one step at a time.

Step 3: S1, S2 progresses and S3 moves back due to lower

travel priority .S3 registers its count1 to 1.

Step 4: Collision is avoided between S1 and S2 and both

move back at that time instant S1 and S2 registers its count1

to 1. S3 moves forward.

Step 5: S1, S2 progresses and S3 moves back due to lower

travel priority .S3 registers its count1 to 2.

Step 6: Due to higher travel priority S1 stays at its position

while S2 moves back 1 step. S2 register its count1 to 2. S1

register count to 1.S3 moves to next step due to availability.

Step 7: Next cell is available for S1 hence moves forward.

S2 and S3 next step is unavailable hence moves back.

Register count1 to 3 and 3 respectively. S2 and S3 creates an

alternate path. Since S1 at that time instant is not blocking

S3‟s next path, S3 could not locate any nearby droplets from

its step[i+1] and hence nothing to avoid and recalculates the

same path and path is unchanged. Whereas for S2, S3 was

responsible for making S2‟s next path unavailable. So S2

rewrites its path and makes an alternate path avoiding S1.

Count1 is set to 0 for both S2 and S3.

Step 8: S1 moves forward to its next step as it is available.

S2 moves to the next step as per the newly calculated and

rewritten path. S3 moves to next step.

Step 9: next step for S1 is unavailable at that moment as S1

has higher travel priority S1 moves first hence S1 moves

back 1 step and count1 for S1 is 2. S2 moves to next step. S3

next step is unavailable hence S3 moves back and registers

count1 as 1.

Step 10, 11, 12: S1, S2, S3 moves forward.

Step 13: S1 reaches target. S2 moves forward. S3‟s next step

is unavailable hence moves backwards. count1 is set to 2 for

S3.

Step 14, 15, 16: S2, S3 moves forward. S3 reaches Target.

Step 17: S2 reaches target.

Now we can calculate the latest arrival time and overall cells

utilization as follows;

Latest Arrival Time: Maximum {S1 to T1, S2 to T2, S3 to T3}

 =Maximum {13, 17, 16} = 17

Cells Utilization: {Total cells used by all routing paths -

Paper ID: SUB151895 258

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 Total number of pins to represent all

 Source-target pairs}

 = {23 - 5} = 18

5. Complexity Analysis

5.1. Complexity at Routing Time

1. As path length „m‟ (Manhattan distance) for any droplet

from source to target will be less than n. Hence for our

best case when no collision occurs and droplet at each

clock will move to its next step and reach its target.

Complexity will be O(m).

2. Suppose if collision occurs the droplet will decide to stall

or move back or find another path depending on the

conditions. If it tries to find a new path, our modified BFS

algorithm takes O(n) time to make path from source cell

to all cells in the grid. Hence, at run time complexity will

be O(m*n).

5.2. Modified_BFS

1. Instead of using a graph matrix we are using the source as

the root and all the adjacent cells as its child, and so on.

2. For the grid each cell is enqueued only once due to

greying. Hence complexity = O(n).

3. Since path cannot be greater than n hence printing the path

will take m < n iterations. Hence complexity is O(m).

4. Therefore, complexity is O(m)+O(n) = O(m+n).

6. Experimental Results

We applied the proposed algorithm on Benchmark Suite 2

[2]. The layouts of the source-target pairs along with the

obstacles (Blockages) for two test cases are shown in Figure

2 and Figure 3. Different colors associated with different

sources (Si) are used for reflecting the routing paths towards

their respective targets (Ti). It is found that all the droplets

are routed concurrently from their source to destination

without any failure. Also the Latest Arrival Time and the

overall cells utilization are marginally reduced. However, in

some cases the overall electrode usage is increased due to

backtracking and detouring but with a significant reduction in

Latest Arrival Time.

Figure 2: Layout for Test 1 along with the routing path of

each droplet (Grid size = 12×12; Number of droplets = 12)

Figure 3: Layout for Test 6 along with the routing path of

each droplet (Grid size = 16×16; Number of droplets = 16)

7. Conclusion

The proposed algorithm reveals the parallel routing task with

a marginal improvement in Latest Arrival Time and overall

electrodes utilization. The algorithm is applied on

Benchmark Suite 2 (2-pin nets) and the empirical results are

quite encouraging. The algorithm also can be applied on 3-

pin or multi-pin nets (source-target pairs).

References

[1] Boahringer. K. F. ―”Modeling and controlling parallel

tasks in droplet based microfluidic systems”. IEEE

Transactions Computer-Aided Design of Integrated

Circuits and Systems, 25(2):334 - 344, February 2006.

[2] Cho Minsik and Pan. David Z. ―”A high-performance

droplet routing algorithm for digital microfluidic

biochips”. IEEE Transactions Computer-Aided Design

of Integrated Circuits and Systems, 27(10):406-419,

October 2008.

[3] Akella S. Griffith E. J. and Goldberg. M. K.

―”Performance characterization of a reconfigurable

planar-array digital microfluidic system”. IEEE

Transactions Computer-Aided Design of Integrated

Circuits and Systems, 25(10):340-352, February 2006.

[4] Hwang William,Su Fei and Chakrabarty Krishnendu.

―”Droplet routing in the synthesis of digital

microfluidic biochips.” In Proceedings of Design

Automation and Test in Europe, 2006.

[5] Zeng X., Liu L.Wu, J ,Yue. R.― Droplets Actuating

Chip Based On EWOD”. Springer-Verlog, 2007.

[6] Mukherjee. T. ―”Design automation issues for

biofluidic microchips”. In Proceedings of International

Conference on Computer Aided Design, page 463 - 470,

November 2005.

[7] Pollack M.G, Paik P,Pamula V.K and Chakrabarty K.

―”Coplanar digital microfluidics using standard printed

circuit board Processes”.In Proceedings of in MicroTAS,

2005.

[8] Yang C.L, Yuh P.H. and Chang. Y.W.―”Bioroute: A

networkflow based routing algorithm for digital

Paper ID: SUB151895 259

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

microfluidic biochips”. In Proceedings of IEEE/ACM

International Conference of Computer Aided Design,

pages 752-757, 2007.

[9] Yang Chia-Lin,Chang Yao-Wen,Yuh Ping-Hung,

Sapatnekar Sachin. ―”A progressive-ilp based routing

algorithm for Crossreferencing biochips”. In

Proceedings of Design Automation Conference, pages

284 - 289, June 2008.

[10] Ren H., Paik P, Pamula V. K, Fair R. B., Srinivasan V.

and Pollack.M.G. ―”Electrowetting-based on-chip

sample processing for integrated microfluidics”. In

Proceedings of IEEE International Electron Devices

Meeting (IEDM), pages 32.5.1-32.5.4, 2003.

[11] Tailor T.D.,Ivanov V.,Evans R. D., Griffin P. B.,

Srinivasan,V.Pamula V. K., Pollack M. G. Fair R. B. ,

Khlystov A.and Zhou J.. ―”Chemical and biological

applications of digital- microfluidic devices”. IEEE

Design and Test for Computers, 24:10-24, 2007.

[12] Su Fei and Chakrabarty Krishnendu. ―”Architectural-

Level synthesis of digital microfluidics-based biochips”.

In Proceedings of IEEE International Conference on

CAD, pages 223-228,2004

[13] Su F, Xu T. , Hwang W. and Chakrabarty. K.

―”Automated design of pin-constrained digital

microfluidic biochips under droplet-interference

constraints”. ACM Journal on Emerging Technologies in

Computing Systems, 3(14), 2007.

[14] Rivest Robert L., Cormen Thomas H, Leiserson. Charles

E. ―”Introduction to Algorithms”. MIT, 1990.

[15] Xu T. and Chakrabarty. K. ―”Droplet-trace-based array

partitioning and a pin assignment algorithm for the

automated design of digital microfluidic biochips”. In

Proceedings of IEEE/ACM International Conference on

Hardware/Software Codesign and System Synthesis,

pages 112-117, 2006.

[16] Xu T. and Chakrabarty. K. ―”A cross-referencing-based

droplet manipulation method for high-throughput and

pin-constrained digital microfluidic arrays”. In

Proceedings of Design Automation and Test in Europe,

pages 552 - 557, April 2007.

[17] Xu T. and Chakrabarty. K. ―”Integrated droplet routing

in the synthesis of microfluidic biochips”. In

Proceedings of Design Automation Conference, pages

948 - 953, 2007.

[18] Paik Philip. Y., Pamula Vamsee K. and Chakrabarty

Krishnendu,― “Adaptive Cooling of Integrated Circuits

Using Digital Microfluidics”. IEEE Transactions on

Very Large Scale Integration(VLSI) Systems, vol. 16, no.

4, April 2008.

[19] Han Jiawei, Kamber Micheline, Pei Jian ―”Data

Mining-Concepts and Techniques”. Elsevier Inc. 2012.

Author Profile

Prasanta Kr. Roy received his M. Tech. degree in

VLSI Design from Bengal Engineering and Science

University, Shibpur (Currently known as IIEST,

Shibpur) in 2010. Nowadays he is working as an

Assistant Professor at Siliguri Institute of Technology

in the department of Computer Science and Engineering. He is a

lifetime member of “Institution of Engineers, India”.

Suman Shaw is a student of Bachelor of Technology

in Computer Science and Engineering, at Siliguri

Institute of Technology. His areas of interest are

Algorithms and design.

Paper ID: SUB151895 260

