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Abstract: In this present era, design of digital micro-fluidic biochips (DMFBs) is a challenging area of research interest. The source-

target routing is a crucial problem in a DMFB. In this paper, we propose a high performance linear-time based routing algorithm to 

route multiple droplets at the same time (Latest Arrival Time) with special emphasis on collision avoidance satisfying the underlying 

constraints. Here we consider a number of droplets with a single source-target pair for each droplet (2-pin network). The major goal is 

to route all droplets concurrently with optimized latest arrival time and reduced cell utilization. The algorithm is based on Breadth-

First-Search [14] with a little modification in order to reduce CPU utilization.  
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1. Introduction 
 

Recently DMFB technology has gained much attention due to 

the increasing advancements in micro-fabrication and micro-

electromechanical systems (MEMS). It can perform 

necessary biological tasks (such as clinical diagnosis and 

DNA sequence analysis) on a single small integrated system 

(Lab-on-a-Chip [6]) and thus provides design flexibility, 

higher sensitivity, comparatively smaller size and lower cost. 

 

The underlying technology also provides comparatively 

reduced sample size, reagent volume and power consumption 

by micromanipulation of discrete fluid particles (droplets). 

 

The movement of droplets is controlled by the principle of 

electro-wetting-o-dielectric [10]. In a DMFB, an array of 

electrodes is placed in between two parallel glass plates 

where the top plate and the bottom plate is applied a ground 

voltage and high voltage, respectively. Each parallel plate 

electrode pair is considered as a unit cell. The movement of a 

droplet from one cell to its neighboring cell is controlled by 

applying proper voltage to the bottom plate. The application 

of voltage may vary according to the need of droplet 

movement from one electrode to the other, and the overall 

process is controlled by a processor with pre-determined 

clock frequency to determine the velocity of movement [12]. 

 

Recently, a coplanar digital microfluidic system [7] has been 

introduced which have no top plate. Because of their digital 

characteristic, any operation on droplets can be performed 

with a set of library operations (VLSI standard library). The 

control of a droplet can be accomplished by applying a 

sequence of preprogrammed electric signals (Actuation 

sequences) [5]. Therefore, a DMFB can be designed by 

applying a hierarchical cell-based design methodology. Thus, 

once strong CAD frameworks are ready, a large scale 

complex DMFB can be designed as done in VLSI. However, 

CAD research for DMFB design has started very recently. A 

top down design methodology for a DMFB is proposed in 

[12], which mainly consists of architecture level synthesis 

and geometry-level synthesis. The geometry-level synthesis 

consists of module placement and droplet routing. Module 

placement determines the location of each module in order to 

minimize the chip area or response time. During droplet 

routing, the transportation path of each droplet is determined 

to avoid any unexpected mixture satisfying all the design 

constraints. As in the module placement, a cell can be used to 

transport different droplets during different time intervals 

(time-multiplexing), which increases the complexity of 

routing. One of the major goals of droplet routing is 

routability as in VLSI [17], while satisfying timing constraint 

and maximizing fault tolerance [6]. [12] describes the 

synthesis procedure of DMFB which involves optimization 

of certain cost functions under some resource constraints 

.Area optimization as well as resource sharing is essential for 

easier subsequent phases during placement of cells. 

Typically, in droplet routing, the optimization of throughput, 

time and resource utilization is the most crucial aspect. 

 

Section 2 describes the related works based on the literature 

survey. In section 3, we focus on the preliminary concepts of 

droplet routing. Section 4 discusses the proposed approach 

along with an example. Section 5 covers the complexity 

analysis of the proposed algorithm. In section 6, we 

summarize the experimental results based on some standard 

benchmarks and finally section 7 provides the concluding 

remarks.  

  

2. Related Works 
 

Nowadays, optimization of ever increasing complex design 

of DMFB has become a critical area of research [11]. 

Designers are continuously trying to improve DMFB 

integration in order to optimize the basic goals such as 

throughput, time and resource utilization. 

 

Recently, droplet routing is a crucial issue to enhance the 

performance for biochip design automation. Several routing 

mechanisms have been proposed so far. [3] describes a graph 

coloring approach in which the control of droplet movement 

over the electrodes was defined by direct addressing of the 

micro-controller control unit. An acyclic graph was 

constructed based on the movement time of droplets and the 

coloring was done based on the parallel routing of droplets. 

[16] also uses a direct addressing mechanism along with a 

graph clique model for mapping of the droplet routing 

problem. The optimal partitioning of the clique model is used 

to optimize the droplet routing time. An integer linear 

programming (ILP) based approach was proposed in [9] 

which explored the use of direct addressing mode in biochip 
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routing problem. In [4], dynamic reconfigurability of the 

microfluidic array is exploited during run-time. The proposed 

method starts with an initial placement technique. During 

module placement phase, a series of 2-D placement 

configurations is obtained in different time spans. Then 

appropriate routing paths are determined to complete droplet 

routing. To find the ultimate solution the given problem was 

decomposed into several sub-problems based on their initial 

placement and then each sub-problem was solved 

sequentially. A high performance droplet routing mechanism 

was proposed in [2] using a grid based representation. 

Initially, the proposed algorithm checks for those droplets 

which can be routed without any obstacle or blockage due to 

other droplets (routing by bypassibility) and then they are 

arranged for concurrent routing without considering the 

blockages. Routing of the remaining droplets is considered in 

presence of blockage and a concession zone was introduced 

to ascertain feasibility of the routing. Finally, the 

optimization phase is done by applying a compaction based 

algorithm. The network flow based method was proposed in 

[8]. The proposed method was based on non-intersecting 

bounding box technique. Firstly the bounding box of each net 

was determined and then a non-intersecting set of bounding 

boxes were chosen to route first. The min-cost max-flow 

algorithm was used for routing of the remaining nets. The 

concept of stalling was used in the A* search algorithm [1]. 

The algorithm used a graph representation to differentiate the 

state of the source-target pairs at different times. Then the A* 

search algorithm was used to choose the optimal path 

between source-target pairs. A pin-constraint based biochip 

design was proposed in [13] to optimize the number of 

control pins by proper modeling of assays and their 

operations. This involves scheduling of the bio assays and 

paths for net routing. [15] also proposed a partition based 

mechanism for pin constraint based design. 

 

3. The Routing Task 
 

Recently, DMFB routing is a crucial area of research interest 

due to increasing complexity of biochips. The major goal is 

to find an optimal path between source(s)-target(s) pair to 

transport a droplet while satisfying the underlying 

constraints. The DMFB routing task is very similar to VLSI 

routing where a set of wires need to be connected under 

certain design rules. Though DMFB routing differs from 

VLSI routing in the following manners: 

 In DMFB routing, multiple droplets can share the same 

cell during different time intervals [1, 4] (Time Division 

Multiplexing).  

 Stalling of a droplet, if needed, at a particular cell is 

allowed in DMFB routing. 

 DMFB routing needs 3-D spacing by underlying 

constraints. 

 

Typically, a droplet routing problem in DMFBs can be 

configured in terms of a 2-D grid array (Figure 1). Each 

droplet is associated with a source-target pair. The goal is to 

route all the droplets concurrently, if feasible, from its source 

location to its target location. Since multiple droplets are 

routed in parallel, they may intersect or overlap with each-

other. To avoid this undesirable behavior, fluidic constraint 

rules [2] must be introduced. The movement of droplets is 

done in time multiplexed manner to optimize their 

reachability at the target cells. Due to the overall routing task 

is done in parallel; there can be unwanted mixtures of 

droplets if the minimum spacing is not maintained between 

them. Though, in some cases merging of droplets is required 

(3-terminal nets). 

 

Suppose we have two droplets Di(Xi(t),Yi(t)) and 

Dj(Xj(t),Yj(t)) initially at time t. They must not be located 

adjacent or diagonally adjacent to each-other in order to 

avoid mixing. Therefore, at any instant of time t, either |Xi(t) 

– Xj(t)| ≥2 or |Yi(t) – Yj(t)| ≥2 must be satisfied. This 

constraint is known as Fluidic constraint [2].  

 Static constraint: |Xi(t) – Xj(t)| ≥2 or |Yi(t) – Yj(t)| ≥2 

 Dynamic constraint: |Xi(t+1) – Xj(t)| ≥2 or |Yi(t+1) – Yj(t)| 

≥2 Or |Xi(t) – Xj(t+1)| ≥2 or |Yi(t) – Yj(t+1)| ≥2 

 

4. Proposed Approach 
 

All the methods discussed in Section 2 can perform 

concurrent routing only for those droplets whose paths are 

clear (i.e. no blockage can occur between source-target 

routing paths). The routing for remaining droplets can be 

done in a sequential manner. In this paper, we propose a 

parallel routing approach for all droplets (whether blocked or 

cleared). Considering a EWOD model, we summarize our 

proposed algorithm as follows; 

 Concurrent routing of all droplets satisfying the fluidic 

constraints. 

 Finding the most significant path in order to optimize the 

latest arrival time. 

 Assignment of priority, by means of their distance function 

(Manhattan Distance ), to each droplet so that in case of a 

collision, the higher priority droplet can be routed first and 

the lower priority droplet is in waiting (stalling of droplet) 

state until the path is clear.  

 Backtracking also can be done when more than one same 

priority droplets cause a collision. 

 

4.1. The Algorithm 

 

 Before Routing Starts: 

1. Set-up floor [x, y]. 

2. If blocks present then mention location of blocked cells. 

3. For each cell Cij in the Floor add reference of its adjacent 

cell (i.e. C.NORTH, C.SOUTH, C.EAST and C.WEST) in 

it. If any of the adjacent cells are blocked or absent then 

mark its reference as absent. 

4. Place droplets on the floor at its respective source position 

sequentially. If any droplet is found to being placed at the 

same/adjacent position of any other droplet, register that 

droplet as failed. Don‟t place that Droplet. 

5. Nearby droplets are clustered/grouped using k-mean 

algorithm [19]. Each Droplet is assigned priority based on 

the number of droplets in its cluster. 

6. For each droplet find a path using Modified_BFS ( ) from 

its source to target location. If no path can be found then 

droplet cannot be routed. Register that droplet as failed and 

kill it. 
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7. Thread priority is assigned in decreasing order with respect 

to the path length of the droplet. 

8. For each droplet, if it is alive then start routing using 

Path_Route( ). 

9. Wait till all the droplets reaches its target then print 

“routing complete”. 
 

 Path_Route( ): 

Let us assume the pre-calculated path is stored in an array 

“step” of length not more than x*y. 
 

1. Initialize i  0 , count  1, count1 1 

2. Until droplet position not equal to target repeat  

2.1.  If Move_Ahead() returns successful then wait for 
the next clock signal and then go back to 2. 

2.2.  Else if returns unsuccessful then check around the 

position step[i+1]. Assign t  priority of the lowest 

priority droplet responsible for the collision around 

step[i+1]. 

2.3. If this droplet priority is less than t then 

2.3.1. Check if i > 0 and if this droplet can go 1 

step backwards then move the droplet 

backwards 1 step using Move_Back( ). 

count1 count1+1. 

2.3.2. Else try to make an alternate path. If 

alternate path cannot be found the move 

back and try to find alternate path again. 

Loop 2.3.2 until alternate path is found. 

2.4. Else if droplet priority is equal to t then 

2.4.1.  Assign tt  priority of the lowest path length 

droplet around step[i+1].  

2.4.2.  If this droplet path length is less than tt then 

2.4.2.1. Check if i > 0 and if this droplet can 

go 1 step backwards then move the 

droplet backwards 1 step. count1 

count1+1. 

2.4.2.2. Else try to make an alternate path. If 

alternate path cannot be found the 

move back and try to find alternate 

path again. Loop 2.4.2.2. until 

alternate path is found. 

2.4.3.  Else if droplet path length is equal to tt then 

2.4.3.1. If this droplet has the lowest droplet 

ID among all the droplets around step[i+1] then 

2.4.3.1.1. Check if i > 0 and if this 

droplet can go 1 step 

backwards then move the 

droplet backwards 1 step. 

count1 count1+1. 

2.4.3.1.2. Else try to make an 

alternate path. If alternate 

path cannot be found the 

move back and try to find 

alternate path again. Loop 

2.4.3.1.2. until alternate 

path is found.  

2.4.3.2. Else keep droplet at step[i] and 

count  count+1. 

2.4.3.3. End if 

2.4.4.  Else keep droplet at step[i] and count  

count+1. 

2.4.5. End If 

2.5. Else keep droplet at step[i] and count  count+1. 

2.6. End If 

2.7. If count is divisible by 4 then  

2.7.1.  Try to make an alternate path. If alternate 

path cannot be found the move back and try 

to find alternate path again. Loop 2.6.1. 

until alternate path is found. 

2.7.2.  Increment count by one. 

2.8. Else if count1 is divisible by 4 then  

2.8.1.  Try to make an Make_Alternate_Path( ). If 

alternate path cannot be found then move 

back and try to find alternate path again at 

next clock. Loop 2.7.1. until alternate path 

is found. 

2.8.2.  Increment count1 by 1 

2.9. End If  

3. End Loop 

4. If droplet has reached target position then register 

droplet as reached and pick up droplet from floor. 

5. End 
 

 Make_Alternate_Path( ) : 

 

1. Make copy of main floor excluding the droplets but 

keeping the blocks as virtualfloor. 

2. Find all the droplets around step[i+1] and mark all the cells 

around those droplets including the position of the droplet 

as blocked. 

3. For each cell Cij in virtualfloor add reference of its 

adjacent cell (i.e. C.NORTH, C.SOUTH, C.EAST and 

C.WEST) in it. If any of the adjacent cells are absent or 

blocked then mark its reference as absent. 

4. Try to make a path from the current position to the target 

using BFS and overwrite the pre-calculated path from 

step[i] to target with the new found path around the 

collision causing higher priority droplet. 

5. If the alternate path is successfully discovered then discard 

the duplicate floor and return successful. 

6. Else discard the duplicate floor and return unsuccessful. 

7. End 
 

 Move_Ahead( ) : 

 

1. Check if step[i+1] is available i.e. no droplet is present 

around step[i+1] excluding itself. 

2. If available then place droplet at that position, increment i 

and return successful. 

3. Else return unsuccessful. 

4. End If 

5. End 
 

 Move_Back( ) : 

 

1. Check if step[i-1] is available i.e. no droplet is present 

around step[i-1]excluding itself. 

2. If available then place droplet at position step[i-1], 

decrement i and return successful. 

3. Else return unsuccessful. 

4. End If 

5. End 
 

 Modified_BFS( ): 
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1. Initialise Queue  Ø 

2. N  x*y (total number of cells) 

3. Initialise all cells as white. Set d ∞ and π  NIL 

4. Set colour of source as grey. d 0 & π NIL 

5. Enqueue  source cell 

6. Loop till Queue is not empty 

6.1. cell  dequeue( ) 

6.2. for all the cells v present adjacent to cell(i.e. north, 

east, west, south), if v.colour is white then 

6.2.1. set v.colour  grey 

6.2.2. set v.d  cell.d + 1 

6.2.3. v.π  cell 

6.2.4. Enqueue  v 

6.3. cell.colour  black 

7. end loop 

8. Make the path using Print-path( ) algorithm and return 

successful. If “path not found” then return unsuccessful. 

9. End 
 

 Print-path( ): 

 

1. if target cell.π = NIL then return “path not found” 

2. Initialize stack top = -1  

3. Loop until cell.π = NIL 

3.1. Push into stack cell 

3.2. cellcell.π 

4. end loop 

5. loop until stack is not empty 

5.1. mm+1 

5.2. step[m]stack.pop 

6. end loop 

7. assign the rest of the array step as NIL. 

8. return successful 

 

Hence, all the droplets are routed in parallel and the 

maximum timestamp (Latest Arrival Time) and overall cells 

utilization has been considerably reduced.  

 

4.2. An Example 

 

Considering a 8×8 grid with 3 source-target pairs (2-pin net) 

for 3 droplets (Figure 1), the proposed algorithm works as 

follows; 

S1 source position (3,0) target position (2,7) clustered with 

itself due to k-mean algorithm hence drop priority = 1 and 

path length = 8 

S2 source position (2,7) target position (2,0) clustered with 

itself due to k-mean algorithm hence drop priority = 1 and 

path length = 7 

S3 source position (6,3) target position (0,5) clustered with 

itself due to k-mean algorithm hence drop priority = 1 and 

travel priority = 6 

They choose the optimal path to their target and routing 

starts. The color associated with each source pair reflects the 

routing path of that droplet towards its target. 

 

 
Figure1: Routing of a 2-pin net considering 3 source-target pairs  

 

Step 1, 2: no collision occurs, all droplets moves forward 

one step at a time. 

Step 3: S1, S2 progresses and S3 moves back due to lower 

travel priority .S3 registers its count1 to 1. 

Step 4: Collision is avoided between S1 and S2 and both 

move back at that time instant S1 and S2 registers its count1 

to 1. S3 moves forward. 

Step 5: S1, S2 progresses and S3 moves back due to lower 

travel priority .S3 registers its count1 to 2. 

Step 6: Due to higher travel priority S1 stays at its position 

while S2 moves back 1 step. S2 register its count1 to 2. S1 

register count to 1.S3 moves to next step due to availability. 

Step 7: Next cell is available for S1 hence moves forward. 

S2 and S3 next step is unavailable hence moves back. 

Register count1 to 3 and 3 respectively. S2 and S3 creates an 

alternate path. Since S1 at that time instant is not blocking 

S3‟s next path, S3 could not locate any nearby droplets from 

its step[i+1] and hence nothing to avoid and recalculates the 

same path and path is unchanged. Whereas for S2, S3 was 

responsible for making S2‟s next path unavailable. So S2 

rewrites its path and makes an alternate path avoiding S1. 

Count1 is set to 0 for both S2 and S3. 

Step 8: S1 moves forward to its next step as it is available. 

S2 moves to the next step as per the newly calculated and 

rewritten path. S3 moves to next step. 

Step 9: next step for S1 is unavailable at that moment as S1 

has higher travel priority S1 moves first hence S1 moves 

back 1 step and count1 for S1 is 2. S2 moves to next step. S3 

next step is unavailable hence S3 moves back and registers 

count1 as 1. 

Step 10, 11, 12: S1, S2, S3 moves forward. 

Step 13: S1 reaches target. S2 moves forward. S3‟s next step 

is unavailable hence moves backwards. count1 is set to 2 for 

S3. 

Step 14, 15, 16: S2, S3 moves forward. S3 reaches Target. 

Step 17: S2 reaches target. 

 

Now we can calculate the latest arrival time and overall cells 

utilization as follows; 

 

Latest Arrival Time: Maximum {S1 to T1, S2 to T2, S3 to T3}  

 =Maximum {13, 17, 16} = 17 

Cells Utilization: {Total cells used by all routing paths -  
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 Total number of pins to represent all 

 Source-target pairs} 

 = {23 - 5} = 18 

  

5. Complexity Analysis 
 

5.1. Complexity at Routing Time 

 

1.  As path length „m‟ (Manhattan distance) for any droplet 

from source to target will be less than n. Hence for our 

best case when no collision occurs and droplet at each 

clock will move to its next step and reach its target. 

Complexity will be O(m). 

2.  Suppose if collision occurs the droplet will decide to stall 

or move back or find another path depending on the 

conditions. If it tries to find a new path, our modified BFS 

algorithm takes O(n) time to make path from source cell 

to all cells in the grid. Hence, at run time complexity will 

be O(m*n). 

 

5.2. Modified_BFS 

 

1. Instead of using a graph matrix we are using the source as 

the root and all the adjacent cells as its child, and so on. 

2. For the grid each cell is enqueued only once due to 

greying. Hence complexity = O(n). 

3. Since path cannot be greater than n hence printing the path 

will take m < n iterations. Hence complexity is O(m). 

4. Therefore, complexity is O(m)+O(n) = O(m+n).  

 

6. Experimental Results 
 

We applied the proposed algorithm on Benchmark Suite 2 

[2]. The layouts of the source-target pairs along with the 

obstacles (Blockages) for two test cases are shown in Figure 

2 and Figure 3. Different colors associated with different 

sources (Si) are used for reflecting the routing paths towards 

their respective targets (Ti). It is found that all the droplets 

are routed concurrently from their source to destination 

without any failure. Also the Latest Arrival Time and the 

overall cells utilization are marginally reduced. However, in 

some cases the overall electrode usage is increased due to 

backtracking and detouring but with a significant reduction in 

Latest Arrival Time. 

 

 
Figure 2: Layout for Test 1 along with the routing path of 

each droplet (Grid size = 12×12; Number of droplets = 12) 

 
Figure 3: Layout for Test 6 along with the routing path of 

each droplet (Grid size = 16×16; Number of droplets = 16) 
 

7. Conclusion 
 

The proposed algorithm reveals the parallel routing task with 

a marginal improvement in Latest Arrival Time and overall 

electrodes utilization. The algorithm is applied on 

Benchmark Suite 2 (2-pin nets) and the empirical results are 

quite encouraging. The algorithm also can be applied on 3-

pin or multi-pin nets (source-target pairs). 
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