Comparative Study of Techniques for Edge Detection of Angiogram Images using Classical Image Processing

S. V. Pattalwar¹, Minal P. Lokhande²

¹Associate Professor, Department of Electronics & Telecommunication Engineering, Prof. Ram Meghe Institute of Tech. & Research, Badnera, Amravati, Maharashtra, India
²PG Student [Digital Electronics], arment of Electronics & Telecommunication Engineering, PRMIT&R, Badnera, Amravati, Maharashtra, India

Abstract: In medical image processing, blood vessels need to be extracted clearly and properly from a noisy background, drift image intensity, and low contrast pose. The Blood vessels of the human body can be visualized using many medical imaging methods such as X-ray, Computed Tomography (CT), and Magnetic Resonance (MR). Angiography is a procedure widely used for the observation of the blood vessels in medical research, where the angiogram area covered by vessels and/or the vessel length is required. Vessel enhancement and segmentation is an effective technique used in angiogram. Segmentation is a process of partitioning a given image into several non-overlapping regions. Edge detection is an important task and in this process and complex algorithms have been modeled for the detection of the edges of the blood vessels. This paper discusses a comparative study of digital image-processing algorithm for detecting the edges of the vessels in the angiogram images.

Keywords: blood vessels, human, angiography, classical image processing

1. Introduction

Angiography is a procedure widely used for the observation of the blood vessels in medical research, where the angiogram area covered by vessels and/or the vessel length is required. The Blood vessels of the human body can be visualized using many medical imaging methods such as X-ray, Computed Tomography (CT), and Magnetic Resonance (MR). In medical image processing, blood vessels need to be extracted clearly and properly from a noisy background, drift image intensity, and low contrast pose.

Segmentation plays a vital role in the detection of blood vessels in an angiogram image. It is a process of partitioning an angiogram into several non-overlapping regions. Thus it is used to extract the vascular and background regions. Based on the partitioning results, surfaces of vasculatures can be extracted, modeled, manipulated, measured and visualized. Hence it is used to detect the various vascular diseases. Therefore, developing reliable and robust image segmentation methods for angiography has been the priority and by the other research groups.

Generally segmentation subdivides the image into its constituent parts or objects. Autonomous segmentation is one of the most difficult tasks in image processing. Edge detection is done to segment the blood vessels from the angiogram images. Edge detection algorithms are followed by linking and boundary detection procedures. Edge detection is used for detecting discontinuities in gray level. First and second order digital derivatives are implemented to detect the edges in an image. Edge is defined as the boundary between two regions with relatively distinct gray-level properties. An edge is a set of connected pixels that lie on the boundary between two regions.

2. Existing Techniques

Satish Kumar and R. Amutha [1] explains that the edges of the vessels in the angiogram image are detected using the algorithm based on classical image processing techniques. The proposed algorithm is not complicated but accurate and involves very simple steps. The proposed algorithm detects the edges of the blood vessel from the given angiogram image using the classical image processing techniques. The results provide that the proposed algorithm is effective and efficient in detecting the edges.

The algorithm discussed, involves the following steps.
Step 1: Read the given angiogram image, and convert it into a matrix form, where each pixel value is in the range from 0-255.
Step 2: Apply median filtering to remove noise.
Step 3: Take Histogram of the given input image.
Step 4: Obtain a uniform histogram using histogram equalization or linearization technique.
Step 5: Repeat the above process again.
Step 6: Detect the edges of the angiogram image using 2D FIR filter.

The output of the various edge detected angiogram images to obtain the edges of the blood vessel is shown by the histogram its histogram equalized image. The results show that the edges of the angiogram blood vessel so detected using the proposed algorithm is more efficient as compared to the canny edge detection algorithm.

Anshita Aggarwal and Amit Garg [2] proposed method based on image de-noising and edge enhancement of noisy multidimensional imaging data sets new denoising scheme based on adaptive multiscale product thresholding is proposed, to merge the merits of thresholding and wavelet
inter scale dependencies. A significant wavelet coefficient is identified if corresponding multi scale product value is greater than adaptive threshold. The algorithm is described in following steps:

STEP 1: Compute the 2-D DWT of input image up to scales

STEP 2: Calculate the multi scale products and set the initial threshold value before applying to wavelet coefficients.

STEP 3: Recover the image from the resultant wavelet coefficients. A proper threshold is determined and imposed on to eliminate the highly noise corrupted intensity pixels and identifying the significant image details.

The various parameter values viz. MAE, PSNR, SNR, Noisy and SNR_Enhanced for various test images obtained for different types of noise i.e. salt and pepper noise, poisson noise, speckle noise and random noise. It was found that each noise affects differently on the image.

Senthilkumaran N and Thimmiaaraja J [3] proposed study and compare different Techniques like Global Histogram Equalization (GHE), Local histogram equalization (LHE), Brightness preserving Dynamic Histogram equalization (BPDHE) and Adaptive Histogram Equalization (AHE) using different objective quality measures for MRI brain image Enhancement. The classical contrast enhancement is Histogram Equalization (HE), which has good performance for ordinary images, such as human portraits or natural images. Transformation or mapping of each pixel of input image into corresponding pixel of processed output image is called Histogram Equalization. Global Histogram Equalization (GHE) is a histogram technique which acquires the input image given by the user and enhances the image globally and displays both the initial and final images. GHE offer a significant progress in image contrast. While GHE takes into description the global information and cannot adjust the local light condition. Local Histogram Equalization (LHE) carries out block-overlapped histogram equalization. LHE classify a sub-block and recovers the image. Adaptive Histogram Equalization (AHE) is a terrific contrast enhancement method for Natural images and Medical images. The method engages applying to each pixel in HE.

The contrast in Enhancement Image is measured with different objective quality metrics like Weber contrast, Michelson contrast, Contrast and AMBE.

Mei Wang, Chunlin Li, Wenhao Cai and Xiaowei Wu [4] explains a new edge detection method is presented based on the information measure, and the new method is applied to the coronary angiogram. Firstly, the blood vessel path points are found by using the square template, and the quasi-center curve of the vessel segment is obtained by using the minimum gray scale criteria and the smoothing technique. Then the orientation information measure concept of an image is introduced, and the 1 values of the information measures of the I points in the same row or the same column are calculated according to the quasi center curve. Finally, the point with the maximum information measure is defined to be the edge point and the edge curve is acquired. The new method possesses the strong noise immunity. Compared to other edge detection methods, the new method does not have the threshold problem, and does not need to convolute the image. Finally, the edge curve is more accurate proved by the experimental results.

The detection of edge points is mainly based on the following image features: orderly distributed gray scale in the neighborhood, directionality, gray scale structural mutation. Noise points also have gray mutation, but they do not meet the three characteristics mentioned above. The corresponding information measure will be used and constructed in this paper to describe quantitatively these three characteristics of the step edge points.

Johann Dr’eo, Jean-Claude Nunes and Patrick Siar explains [5] makes a systematic comparison of different optimization techniques, namely the minimization method derived from the optical flow formulation, the Nelder-Mead local search and the HCIAO ant colony met heuristic, each optimizing a similarity criterion for the gradient images. The optimization techniques used are especially adapted for high resolution problems where more classical techniques cannot be favorably used due to the excessive time requirement.

The proposed algorithm can be summarized in four steps:

1. Wiener filtering of the original image. The Wiener filtering completely preserves the vascular structures.
2. Morphological gradient computing, the morphological gradient of the filtered image is computed so that registration is not disturbed by the variations in the brightness.
3. Median filtering (optional step), the median filtering of the gradient image is computed to smooth the gradient image.
4. Computing the similarity measurement (summing of absolute intensity differences) between the two filtered gradient images under the current transform, and global optimization of similarity criteria. The similarity measurement is the calculation used to judge the closeness between two images under the current transformation.

The various parameter values viz. MAE, PSNR, SNR, Noisy and SNR_Enhanced for various test images obtained for different types of noise i.e. salt and pepper noise, poisson noise, speckle noise and random noise. It was found that each noise affects differently on the image.

Senthilkumaran N and Thimmiaaraja J [3] proposed study and compare different Techniques like Global Histogram Equalization (GHE), Local histogram equalization (LHE), Brightness preserving Dynamic Histogram equalization (BPDHE) and Adaptive Histogram Equalization (AHE) using different objective quality measures for MRI brain image Enhancement. The classical contrast enhancement is Histogram Equalization (HE), which has good performance for ordinary images, such as human portraits or natural images. Transformation or mapping of each pixel of input image into corresponding pixel of processed output image is called Histogram Equalization. Global Histogram Equalization (GHE) is a histogram technique which acquires the input image given by the user and enhances the image globally and displays both the initial and final images. GHE offer a significant progress in image contrast. While GHE takes into description the global information and cannot adjust the local light condition. Local Histogram Equalization (LHE) carries out block-overlapped histogram equalization. LHE classify a sub-block and recovers the image. Adaptive Histogram Equalization (AHE) is a terrific contrast enhancement method for both Natural images and Medical images. The method engages applying to each pixel in HE.

The contrast in Enhancement Image is measured with different objective quality metrics like Weber contrast, Michelson contrast, Contrast and AMBE.
of aortas in cardiovascular MR images is compared with an Active Contour Model (ACM). Results shows that the edge vector and edge map based boundary detection model is better than the active contour based model. Once the input image is received it is given to average edge vector field model through an initial position section. The initial position issued to determine a good initial position of edge in the contour model. For an input image f(x, y), the average edge vector field is computed. Edge map is obtained as the edges of objects in the medical image. This can be derived from Law’s texture or Canny edge detection. Law’s texture is computed by convolving an input image with a mask. Canny edge detection issued for step edges corrupted by white Gaussian noise. This will first convolve the output image obtained from Law’s texture with a Gaussian filter. Then calculate the magnitude and direction of the gradient. Then nonmaximal suppression is made to identify edges and broad ridges in the magnitude must be thinned. Finally thresholding is made to detect and link edges. The boundary of the object is obtained by edge following technique, for this edge magnitude information is considered. But this is not sufficient in noisy images. The average edge vector field and edge map technique will give more information for searching the boundary of objects, with increased probability of correctness.

Step 2: Morphological operations
The morphology transformations are done to extract the features in images, which are derived using the Minkowski addition and subtraction. Thus; the morphological operations are done to detect the edges of the angiogram images and at the same time to denoise the image.

Step 3: Width detection
All the connected components or an object that have fewer than P pixels forming another binary image is removed. As the image is in the form of a matrix, the entire image rows and columns are divided into equal parts to determine the width. Then a loop is assigned so that the parts are processed one after the other, such that the number of objects present in that row is used to determine the width of the angio vessel.

The performance results show that the proposed algorithm is unique in nature and gives better results in terms of accurate segmentation with increased TVL, SIA, TIIA and VIP, and a highly reduced computational time.

Guanyu Yang, Pieter Kitslaar, Michel Frenay, Alexander Broersen [8] present and validate a fully automatic centerline extraction algorithm for coronary arteries in CCTA images. The algorithm is based on an improved version of Frangi’svesselness filter which removes unwanted step-edge responses at the boundaries of the cardiac chambers. Automatic coronary tree extraction algorithm can be divided into several successive steps, i.e. pre-processing, improved Frangi’svesselness filtering, centerline extraction, branch searching and centerline refinement. Pre-processing, Vesselness Filter, Aorta and ostia detection, Centerline extraction, Branch searching and Centerline refinement.

M Spiegel, T Redel, T Struffert, J Hornegger and A Doerfler[9] propose a novel 2D digital subtraction angiography (DSA)-driven 3D vessel segmentation and validation framework. 2D DSA projections are clinically considered as gold standard when it comes to measurements of vessel diameter or the neck size of aneurysms. An ellipsoid vessel model is applied to deliver the initial 3D segmentation. To assess the accuracy of the 3D vessel segmentation, its forward projections are iteratively overlaid with the corresponding 2D DSA projections. Local vessel discrepancies are modeled by a global 2D/3D optimization function to adjust the 3D vessel segmentation toward the 2D vessel contours. Our framework has been evaluated on phantom data as well as on ten patient datasets. Three 2D DSA projections from varying viewing angles have been used for each dataset. The novel 2D driven 3D vessel segmentation approach shows superior results against state-of-the-art segmentations like region growing, i.e. an improvement of 7.2% points in precision and 5.8% points for the Dice coefficient. This method opens up future clinical applications requiring the greatest vessel accuracy, e.g. computational fluid dynamic modeling.
The results show that the match between the forward projection of 3D segmentation volume with manually outlined 2D DSA vessel segmentations is not identical as it is supposed to be for an ideal calibrated case. This occurs because of the influence factors that appear during 3D DSA acquisition.

Mohammed Hafez and Sherif Abdel Azeem[10] describes a new digital image-processing algorithm for detecting Micro aneurysms in Fluoresce in Angiograms of the Ocular Findus for diabetic retinopathy patients. The adaptive segmentation algorithm is summarized as follows:

Step1: Make global edge detection for each image. And label all objects in the resultant image by tracing all connected pixels.

Step2: Test size of each object. If it is larger than maximum size of MA, consider it is as part of vessel and remove it from the image.

Step3: Test the remaining objects. If they are closed or nearly closed, label these objects as candidate MA.

Step4: For each remaining object calculates its edge threshold by computing Sobel edge value for each point in the object. Get the average for those values. Make a window around each object by six pixels and for each point inside this window compute its edge value if it is larger than 0.75 of object edge value and less than 1.5 of object edge value, consider it as an edge point.

Step5: Label the new object by tracing the resultant connected edge points in the window, then test size of each object. If, it is larger than maximum size of MA or it is not closed, consider it as part of vessel to be removed it from the image. Label the remaining objects as candidate MAS.

The proposed scheme results reveal the significant improvements obtained by our new technique in reducing the number of false micro aneurysms than the Hough transform scheme.

3. Placing the Table

This table shows a comparative study of digital image-processing algorithm for detecting the edges of the vessels in the angiogram images.

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Algorithm Description</th>
<th>Remark or Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Edge Detection of Angiogram Images Using the Classical Image Processing Techniques</td>
<td>proposed algorithm detects the edges of the blood vessel from the given angiogram image using the classical image processing techniques. The edges segmented are accurate and clear as compared to the canny edge detection and the steps involved to obtain the edges of the blood vessel are simple and easy to implement. The results provide that the proposed algorithm is effective and efficient in detecting the edges.</td>
</tr>
<tr>
<td>2</td>
<td>Medical Image Enhancement Using Adaptive Multiscale Product Thresholding</td>
<td>proposes an image denoising method using adaptive multiscale product thresholding. Unlike many other traditional schemes that straightforwardly apply threshold to the wavelet coefficients, this method multiplies the neighboring wavelet sub-bands and then apply threshold to multiscale products for improved edge differentiation. Canny edge detector’s performance is enhanced by scale multiplication. Taking the benefit of similarity in filter’s response at adjacent scale, it multiplies the responses to enhance edge structure. From the parameters obtained, for enhanced medical image it can be concluded that proposed algorithm works well for all types of noisy images, but the results obtained were best for the image corrupted due to poisson noise.</td>
</tr>
<tr>
<td>3</td>
<td>Histogram Equalization for Image Enhancement Using MRI brain images</td>
<td>image histogram based enhancement equalization methods are compared for particular enhancement like contrast of MRI brain image. More popular HE methods like GHE, LHE, AHE and BPDHE are compared and some of MRI image data sets and obtained results from the HE methods are processed under the Quality metrics and results are analyzed.</td>
</tr>
<tr>
<td>4</td>
<td>Coronary Angiography Image Edge Detection Based on Information Measure</td>
<td>A new method of the edge detection is proposed based on the information measure in this paper. The new method possesses the strong noise immunity. Compared to other edge detection methods, the new method does not have the threshold problem, and does not need to convolute the image.</td>
</tr>
<tr>
<td>5</td>
<td>Robust rigid registration of retinal angiograms through optimization</td>
<td>The optimization techniques used are especially adapted for high resolution problems where more classical techniques cannot be favorably used due to the excessive time requirement. The metaheuristic is proved to have a better robustness than a local search algorithm and can achieve good qualitative registrations.</td>
</tr>
</tbody>
</table>

Figure: algorithm flow chart

The results show that the match between the forward projection of 3D segmentation volume with manually outlined 2D DSA vessel segmentations is not identical as it is supposed to be for an ideal calibrated case. This occurs because of the influence factors that appear during 3D DSA acquisition.

Mohammed Hafez and Sherif Abdel Azeem[10] describes a new digital image-processing algorithm for detecting Micro aneurysms in Fluoresce in Angiograms of the Ocular Findus for diabetic retinopathy patients. The adaptive segmentation algorithm is summarized as follows:

Step1: Make global edge detection for each image. And label all objects in the resultant image by tracing all connected pixels.

Step2: Test size of each object. If it is larger than maximum size of MA, consider it is as part of vessel and remove it from the image.

Step3: Test the remaining objects. If they are closed or nearly closed, label these objects as candidate MA.

Step4: For each remaining object calculates its edge threshold by computing Sobel edge value for each point in the object. Get the average for those values. Make a window around each object by six pixels and for each point inside this window compute its edge value if it is larger than 0.75 of object edge value and less than 1.5 of object edge value, consider it as an edge point.

Step5: Label the new object by tracing the resultant connected edge points in the window, then test size of each object. If, it is larger than maximum size of MA or it is not closed, consider it as part of vessel to be removed it from the image. Label the remaining objects as candidate MAS.

The proposed scheme results reveal the significant improvements obtained by our new technique in reducing the number of false micro aneurysms than the Hough transform scheme.

Figure: algorithm flow chart
6 An Edge Vector and Edge Map Based Boundary Detection in Medical Images

Vector image and edge map based boundary detection model for detecting the boundary in a noisy image is implemented using MATLAB. The performance of the edge vector and edge map boundary detection method for detecting the boundary of aortas in cardiovascular MR images is compared with an Active Contour Model (ACM). Analysis has been made for the probability of errors in image segmentation and computation cost. Results show that the edge vector and edge map based boundary detection model is better than the active contour based model in detecting the object boundaries in noisy images.

7 Automated Segmentation of Angio Vessels

A proposed algorithm segment the blood vessels automatically from the given Coronary angiogram image and detect the blocks and the width of the segmented angiogram image. The performance results show that the proposed algorithm is unique in nature and gives better results in terms of accurate segmentation with increased TVL, SIA, TIIA and VIP, and a highly reduced computational time.

8 Automatic centerline extraction of coronary arteries in coronary computed tomographic angiography

Presented a fully automatic centerline extraction algorithm for coronary arteries in CCTA image which is mainly based on an improved Frangi’s vesselness filter. Quantitative evaluations show that our method is able to extract the coronary arteries with high overlap and accuracy measurements. This automatic extraction algorithm has promising potential for both the clinical practice and the related research work.

9 A 2D driven 3D vessel segmentation algorithm for 3D digital subtraction angiography data

Presented in this work illustrates the first attempt to incorporate 2D projection information into a 3D vessel segmentation method for 3D DSA data. Our results show that the match between the forward projection of 3D segmentation volume with manually outlined 2D DSA vessel segmentations is not identical as it is supposed to be for an ideal calibrated case.

10 Using Adaptive Edge Technique for Detecting Microaneurysms in Fluorescein Angiograms of the Ocular Fundus

Presented a new technique for detecting micro aneurysms in Fluorescein in Angiograms of the Ocular Fundus. We aimed to propose an applicable MA detection scheme. Edges in the image have been detected using Canny edge detector. We have removed the resultant objects that represent vessel segments. Sobe edge detection with adaptive threshold is then used for the neighborhoods of the remaining objects. The analysis of the resultant Objects is used to finally segment the MAS from other retinal feature. The proposed scheme offers significant improvements over the Hough transform scheme in the number of false detected MAS and required computational time.

4. Conclusion

Segmentation plays a vital role in the detection of blood vessels in an angiogram image. It is a process of partitioning an angiogram into several non-overlapping regions. Proposed algorithm will detects the edges of the blood vessel from the given angiogram image using the classical image processing techniques. The edges segmented should be accurate and clear as compared to the previous edge detection and the steps involved to obtain the edges of the blood vessel should be simple and easy to implement.

References

[5] Johann Dr´eo, Jean-Claude Nunes and Patrick Siar, "Robust rigid registration of retinal angiograms through optimization", Elsevier, 10.1016/j.cpmmedimag.2006.07.004

