Integral Solutions of the Homogeneous Biquadratic Diophantine Equations with Five Unknowns

\((X^2 - Y^2) (3X^2 + 3Y^2 - 2XY) = 12(Z^2 - W^2)T^2\)

Dr. P. Jayakumar¹, G. Shankarakalidoss²

¹Department of Mathematics, A.V.V.M SRI Pushpam College (Autonomous), Poondi, Thanjavur-613503, India
²Department of Mathematics, Kings College of Engineering, Punalkulam, Pudukkottai (Dist) -613303, India

Abstract: Four different patterns are used to find non-zero distinct integral solutions for the homogeneous biquadratic Diophantine equations \((X^2 - Y^2) (3X^2 + 3Y^2 - 2XY) = 12(Z^2 - W^2)T^2\). Different types of properties are exposed in every pattern with polygonal, nasty, square and cubic numbers.

Keywords: Homogeneous biquadratic, integral solutions, special numbers

1. Introduction

The number theory is queen of Mathematics. In particular, the Diophantine equations have a blend of attracted interesting problems. For an extensive review of variety of problems, one may refer to [3-12]. In this work, we are observed another interesting four different methods of the non-zero integral solutions of the homogeneous Biquadratic Diophantine equations with five unknowns \((X^2 - Y^2) (3X^2 + 3Y^2 - 2XY) = 12(Z^2 - W^2)T^2\). Further, some elegant properties among the special numbers and the solutions are observed.

2. Method of Analysis

The homogeneous Biquadratic Diophantine equations to be solved is

\((X^2 - Y^2) (3X^2 + 3Y^2 - 2XY) = 12(Z^2 - W^2)T^2\) \(\text{(1)}\)

Introducing the linear transformations

\[X = u + v, \quad Y = u - v, \quad Z = 2u + v, \quad W = 2u - v, \quad \text{where} \quad u \neq v \neq 0 \]

\(\text{in (1)}, \quad \text{we get} \]

\[u^2 + 2v^2 = 6T^2 \] \(\text{(2)}\)

Assume \(T(a, b) = a^2 + 2b^2\), where \((a, b \neq 0)\)

We present below four different patterns of non-zero distinct integer solutions to (1).

2.1 Pattern 1:

Take 6 as

\[6 = (2 + i\sqrt{3}) (2 - i\sqrt{3}) \] \(\text{(5)}\)

Substituting (4) and (5) in (3) and applying the method of factorization, we get

\[(\alpha + i\sqrt{2}v) = (2 + i\sqrt{3}) (\alpha + i\sqrt{2}b)^2 \]

Equating real and imaginary parts, we get

\[u = 2a^2 - 4b^2 - 4ab \] \(\text{(6)}\)

\[v = a^2 - 2b^2 + 4ab \] \(\text{(7)}\)

Putting (6) and (7) in (2), we get non-zero distinct integer valued for \(x, y, z, w\) and satisfying (1) are given below

\[X = X(a, b) = 3a^2 - 6b^2 \] \(\text{(8)}\)

\[Y = Y(a, b) = a^2 - 2b^2 - 8ab \] \(\text{(9)}\)

\[Z = Z(a, b) = 5a^2 - 10b^2 - 4ab \] \(\text{(10)}\)

\[W = W(a, b) = 3a^2 - 6b^2 - 12ab \] \(\text{(11)}\)

The equations (8) to (11) and (4) give non-zero distinct integral solutions of (1) in two parameters.

Properties:

1. \(X(A, A (A+1)) + 24T_{3A}^2 = 3T_{4A}\)
2. \(Y(A (A+1), A+2) - 4T_{3A}^2 + T_{6A} + 48P_A^3 \equiv -8 (\text{mod} 9)\)
3. \(X(A, A+1) - 3Y(A, A+1) = 8P_A\)
4. \(5Y(A, 1) - 2Z(A, 1) + g_i(a+b+1) = 0\)
5. \(8T(A, A) \text{ is a Nasty number}\)
6. \(-6Y(A, A) \text{ is a Nasty number}\)
7. \(-2 \{w(A, A)\} \text{ is a Nasty number}\)

2.2 Pattern 2

Instead of (5), Take 6 as

\[6 = (-2 + i\sqrt{3}) (-2 - i\sqrt{3}) \] \(\text{(12)}\)

We do the same procedure as in pattern:1 and from (2) we get

\[X = X(a, b) = -a^2 + 2b^2 - 8ab \] \(\text{(13)}\)

\[Y = Y(a, b) = -3a^2 + 6b^2 \] \(\text{(14)}\)

\[Z = Z(a, b) = -3a^2 + 6b^2 - 12ab \] \(\text{(15)}\)
\(W = W(a, b) = -5a^2 + 10b^2 - 4ab \quad (16) \)

The equations (13) to (16) and (4) give non-zero distinct integral solutions of (1) in two parameters.

Properties:

1. \(X(A, A + 1) + T_{4,A} + 16 P_A^5 = 8 T_{3,A}^2 \)
2. \(X(A, 1) - 3Y(A, 1) + T(A, 1) - T_{4,A} \equiv 2 \pmod{24} \)
3. \(5Y(A, 1) - Z(A, 1) + T(A, 1) - T_{4,A} \equiv 2 \pmod{36} \)
4. \(X(A, 1) - W(A, 1) + T(A, 1) - 12Pr_A = 2 \pmod{11} \)
5. \([W(A, A)] \) is a Square number
6. \(8 \{X(A, A) + Y(A, A)\} \) is a Nasty number
7. \(5 \{Z(A, A) + W(A, A)\} \) is a Cubic number
8. \(3 \) \{Z(A, A) + W(A, A)\} is a Nasty number

2.4 Pattern:4

Rewrite (1) as

\[6T^2 - w^2 = 2v^2 \quad (28) \]

Consider 2 as

\[2 = (\sqrt{6} + 2)(\sqrt{6} - 2) \quad (29) \]

Assume \(v(a, b) = 6a^2 - b^2; a, b \neq 0 \) \quad (30)

Properties:

1. \(X(A, A + 1) - T(A, A + 1) + 12Pr_A = 12T_{4,A} \)
2. \(5Y(1, B) + T(1, B) - 12Pr_B = 12T_{4,B} \)
3. \(X(1, B) + T(1, B) - T_{4,B} \equiv 0 \pmod{3} \)
4. \([Y(A, A) + T(A, A)] \) is a Nasty number
5. \(2 \{X(A, A) + Y(A, A)\} \) is a Square number
6. \(3 \) \{Z(A, A) + W(A, A)\} is a Nasty number

3. Conclusion

In this work, we have observed four different patterns of the non-zero integer solutions of the homogeneous Biquadratic Diophantine equation \((X^2 - Y^2) (3X^2 + Y^2 - 2XY) = 12(\sqrt{2} - W^2)T^2 \) and relations between solutions and special numbers are also obtained. One may research for any other patterns of this equation and their corresponding properties.

References

Author Profile

P. Jayakumar received the B. Sc , M.Sc degrees in Mathematics from Madras University in 1980 and 1983 and the M. Phil, Ph.D degrees in Mathematics from Bharathidasan University, Thiruchirappalli in 1988 and 2010. Who is now working as Associate Professor of Mathematics, A.V.V.M Sri Pushpam College Poondi (Autonomous), Thanjavur (District) – 613 503, Tamil Nadu, India.

G. Shankarakalidoss received the B. Sc , M.Sc, MPhil degrees in Mathematics from Bharathidasan University, Thiruchirappalli in 2002, 2004 and 2007. Who is now working as Assistant Professor of Mathematics, Kings College of Engineering, Punalur, (Dist) Pin- 613303, India.