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Abstract: This research paper presents an exact analytic solution to the problem of Scattering of Gaussian beam by a Perfect 

Electromagnetic Conductor (PEMC) spheroid coated by a dielectric material using Mie theory. Perfect Electromagnetic Conductor 

(PEMC) medium is used as a special type of meta-material which is a generalization of the well-known concepts of Perfect Electric 

Conductor (PEC) and Perfect Magnetic Conductor (PMC). One of the basic characteristics of PEMC medium is its admittance type 

parameter M. This parameter acts as a basis in deciding the natures of medium as the PEC or PMC. The analytical expressions were 

derived in terms of spheroidal vector wave functions, for exploring the incident, scattered and transmitted Gaussian beam fields. 

Scattering and transmission coefficients were obtained by using boundary conditions at free space-dielectric and dielectric-PEMC 

interfaces. However, these coefficients were used to calculate the radar cross section (Backscattering cross section) and Bi-static cross 

section of Perfect Electromagnetic Conductor (PEMC). Backscattering cross section and Bi-static cross section were also discussed by 

effect of parameter M. The result obtained in this investigation were compared with the unveil data to verify the validity of the 

analytical expressions. 
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1. Introduction 
 

A perfect conductor may be defined as a material or medium 

in which the charge can flow freely. So it can be said that a 

perfect conductor has an infinite value of conductivity and a 

zero resistivity. It is purely an idealization of material used in 

most theoretical studies. Basically there exist two types of 

perfect conductors as perfect electric conductor (PEC) and 

perfect magnetic conductor (PMC). 

 

1.1  Perfect Electric Conductor (PEC) 

 

While studying materials or mediums in electrostatics, one of 

the most important assumptions made is that within a perfect 

electric conductor (PEC) the charges are in equilibrium and 

are fixed in space inside the medium. As a result, electric 

field intensity E becomes zero inside PEC and all the points 

in it are considered to be at same potential. So a perfect 

electric conductor (PEC) is said to be an equi-potential. In 

the absence of an external electric field, the charges inside 

PEC are arranged so as to vanish the internal electrostatic 

field intensity. When this conductor is placed in an external 

electric field, a temporary flow of charges occurs. By the end 

of this flow, charges make their arrangement in such a way so 

that an internal field is established inside the PEC in order to 

add up with the external field and produces a resultant zero 

field. It can be said that the external field is distorted by the 

charges present inside PEC [3]. 
 

E = 0 inside the perfect electric conductor (PEC), so by 

Faraday’s law B = 0. These results can be interpreted for a 

perfect electric conductor (PEC) as under: 

 

                 &      (1.1) 

Putting values of E and B in above equation set gives: 

 

 &       (1.2) 

Perfect electric conductor (PEC) has its own characteristic 

boundary conditions, which can be mathematically stated as 

under: 

 ,    (1.3) 

Where n is the unit normal vector. 

 

1.2 Perfect Magnetic Conductor (PMC) 

 

The idealization of perfect magnetic conductor (PMC) is 

analogous to perfect electric conductor (PEC) in 

electromagnetic. The difference between both is that in PEC 

electric field intensity is zero while in PMC magnetic field 

intensity is zero. This happens by the arrangement of 

magnetic dipoles inside the conductor so as to vanish the 

internal magnetic field. All the basic conditions for the 

material to be a perfect conductor, as discussed previously, 

are also satisfied for perfect magnetic conductor (PMC) [5] 

 

H = 0 inside the perfect magnetic conductor (PMC), so by 

Maxwell’s equations D = 0. These results can be interpreted 

for a perfect magnetic conductor (PMC) as under:  

 

 &     (1.4) 

Putting values of H and D in above equation set gives; 

 

 &       (1.5) 
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Perfect magnetic conductor (PMC) is also specified by its 

boundary conditions as below: 

 

  ,    (1.6) 

 

1.3 Perfect Electromagnetic Conductor (PEMC) 

 

Perfect electromagnetic conductors (PEMC) are meta-

materials having properties which are not commonly 

observed in naturally existing materials. For perfect magnetic 

conductor (PMC) and perfect electric conductor (PEC) cross-

polarized component of scattered field vanishes, however for 

perfect electromagnetic conductor (PEMC) both co-polarized 

and cross-polarized components of the reflected wave or 

field exist. As it is discussed in previous sections that in 

perfect electric conductor (PEC) electric field E vanishes and 

in perfect magnetic conductor (PMC) magnetic field H 

vanishes. Perfect electromagnetic conductors (PEMC) also 

possess boundary conditions, which can be mathematically 

stated as under [7] [2].  
 

 ,    (1.7) 

 

Where M denotes the admittance of the PEMC boundary and 

is independent of spatial coordinates. From these boundary 

conditions it is can easily be understood that PEMC matches 

the PMC when M = 0, while it becomes the PEC 

for . Perfect electromagnetic conductor (PEMC) 

is a medium where the linear combination of E and H 

vanishes. These boundary conditions can be used to find out 

the required solutions of the electromagnetic field interacting 

with the PEMC material in any geometry. In order to fulfill 

the boundary conditions, co-polarized as well as cross-

polarized field components are required to represent the 

field. This fact provides the base for the assumption in case 

of PEMC that it possesses a non-reciprocal feature. 

 

When PEMC material is represented in differential form, it is 

found as the simplest probable medium [2]. It has been 

verified theoretically that a PEMC material acts as a perfect 

reflector of electromagnetic waves [4]. The difference 

between PEMC and PMC or PEC is that the reflected wave 

has a cross-polarized component. These incident and 

scattered field can be expressed in terms of appropriate 

products of Bessel/Hankel functions and Legendre 

polynomials. 

 

2. Scattering theory for coated PEMC 

spheroid 
 

Consider the geometry of a prolate PEMC spheroid with 

prolate spheroidal coordinates  which is coated by 

a spheroidal shell, so that the external coordinates are 

(  and is centered at the origin O. The permittivity of 

the shell material is  and its permeability 

is , where  and are the free space 

permittivity and permeability, respectively. Incident Gaussian 

beam makes an angle  with y-axis and angle  with the xz 

plane. Similarly Scattered Gaussian beam makes an angle 

(scattering angle) with y-axis and an angle  with the 

scattering plane zx. 

 
Figure 1: Coated perfect electromagnetic conductor (PEMC) 

spheroid illuminated by Gaussian Beam. 

 

2.1 Speroidal vector wave functions 

 

The Gaussian beam field will be expanded in terms of the 

spheroidal vector wave functions: 

 

Values of  and component of M: 

 

(2.1) 

 

    (2.2) 

 

Values of  and component of N: 

 

 

 

                   (2.3) 

 
                                                                                        
 Here spherical coordinates  are used, and the 

subscript e stands for even and o for odd, according to 

whether  or  is used when multiplying by 

Radial function   and angular function . The wave 

number k is given by  inside the coating, and by 

 outside it. The superscript specifies the 
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choice of the radial function . For this is a 

spherical Bessel function , for  a spherical 

Neumann function , and for  a spherical Hankel 

function . A Gaussian beam of frequency ω, 

propagating in the z direction, with the electric field 

polarized in the x direction, is incident on the spheroid. 

 

2.2 Incident Field 

 

The expansion of the incident field is given by [6]. 

 

           (2.5) 

 

    (2.6) 

 

Where 

 
 

2.3 Scattered field 

 

The scattered field in the region  is expanded in the 

form 

 

                                                                                          (2.7) 

 

                                                                                          (2.8) 

 

In the standard Mie type scattering theory only the 

coefficients  and  are needed in the scattered field 

expansion. Since in the PEMC boundary conditions (1) and 

(2) mixing of E and H occurs; the coefficients  and  

have to be added. These represent the cross polarized 

components of the scattered field.  

 

2.4 Transmitted Field 

 

The fields inside the coating are expanded in the form 

 

                                                             (2.9) 

                                                                                       (2.10)  

Where  

 
 

 

 

3. Boundary conditions 
We know apply the boundary conditions at the interface 

(dielectric-PEMC). At  the tangential components 

have to satisfy the boundary conditions 

             ,                        (3.1) 

Similarly by using other boundary conditions at free space-

dielectric interface at  

          ,                             (3.2) 

           ,                              (3.3) 

 

3.1 Boundary conditions implementations 

 

Applying the boundary conditions (3.1) – (3.3) and using the 

orthogonality properties of the angular functions we obtain 

the system of six linear equations. 

 

      (3.4) 

 

  

                        (3.5) 

 

     (3.6) 

 

 

                      (3.7) 

 

                   (3.8) 
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                      (3.9) 

 

For the six coefficients . 

Furthermore, the system of six linear equations 

 

                         (3.10) 

 

              (3.11) 

 

   (3.12) 

 

  

                                            (3.13) 

 

=  

                              (3.14) 

 

                 (3.15) 

 
Two systems of six linear equations will be used to obtain 

two sets of coefficients  

and . 

 

Electromagnetic waves, with any specified polarization, are 

normally diffracted or scattered in all directions when 

incident on a target. These scattered waves are broken down 

into two parts. The first part is made of waves that have the 

same polarization as the receiving antenna. The other portion 

of the scattered waves will have a different polarization to 

which the receiving antenna does not respond. The two 

polarizations are orthogonal and are referred to as the 

Principle Polarization (PP) and Orthogonal Polarization 

(OP), respectively. The intensity of the backscattered energy 

that has the same polarization as the radar’s receiving 

antenna is used to define the target RCS. 

 

When a target is illuminated by RF energy, it acts like an 

antenna, and will have near and far fields. Waves reflected 

and measured in the near field are, in general, spherical. 

Alternatively, in the far field the wave fronts are decomposed 

into a linear combination of plane waves. 

 

The RCS defined above is often referred to as either the 

monostatic RCS, the backscattered RCS, or simply target 

RCS. The backscattered RCS is measured from all waves 

scattered in the direction of the radar and has the same 

polarization as the receiving antenna. It represents a portion 

of the total scattered target RCS , where . 

Assuming spherical coordinate system defined by 

then at range  the target scattered cross section is 

a function of . Let the angles  define the 

direction of propagation of the incident waves. Also, let the 

angles  define the direction of propagation of the 

scattered waves. The special case, when  

and , defines the monostatic RCS. The RCS 

measured by the radar at angles  and  is 

called the bi-static RCS.  

 

We can express the scattered electric field in the far zone as 

 

                  (3.16) 

 

Where  

 

                         (3.17) 

 

                         (3.18) 

 

are the spherical coordinates at the point of 

observation with respect to the center of the spheroid. 
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The normalized bi-static cross-section is given by 

 

                (3.19) 

 

The normalized backscattering cross-section is obtained from 

above equation by substituting  and  

                          

                       (3.20) 

 

4. Numerical Results and Discussion 
 

After a large number of numerical calculations, the results 

are presented in the form of normalized bi-static and 

backscattering cross-sections for various spheroid sizes, M 

values, coating thicknesses, and coating permittivity and 

permeability. From the results of these calculations some 

interesting conclusions concerning the polarization and 

symmetry properties of the solutions can be drawn.  

Instead of the parameter M, which extends over an infinite 

range, we use the dimensionless variable , defined by  

 
 

So that  corresponds to the PMC case ( ) and 

 corresponds to the PEC case ( ). 

 

Results are presented in what follows for spheroids of size 

parameter  and the coating parameters  

 Since all the fields have been expanded using 

infinite series, in order to obtain numerical results, these 

series have to be truncated appropriately. The series is taken 

from 0 to 5, i.e., n is taken from 0 to 5. 

In order to verify that the analysis and the software used for 

performing the calculations are correct, we have calculated 

the normalized backscattering cross-section for a PEMC 

spheroid of size parameter   and the coating 

parameters    and compared these results with 

the corresponding results obtained for a perfectly conducting 

sphere of an identical geometry. 

 

1.  The variation of normalized backscattering cross-section 

of co-polarized as well as cross-polarized component of the 

field scattered from the PEMC spheroid coated by dielectric 

medium is studied against the admittance parameter M in 

scattering plane and scattering angle . 

 

In the figure (2) the core size parameter is    and the 

coating parameters . (a) Total 

Backscattering cross section (b) Co-Polarized contribution to 

Backscattering cross section (c) Cross-Polarized contribution 

to Backscattering cross section. Both the co and cross-

polarized contribution is shown along with the total 

backscattering cross section.   

 
Figure 2: Backscattering cross section of a coated PEMC 

spheroid. 

 

The total Backscattering cross section does not depend on M, 

but the relative contributions of the co-polarized and cross-

polarized contributions depend on M. Both the co-polarized 

and cross-polarized component of scattered field varies 

approximately inversely to each other. It means that if one 

component has increasing values, at the same time the other 

has decreasing one. Comparing these results in with the 

corresponding results calculated in (Ruppin 2009) using 

spherical vector wave functions the two sets of results are in 

agreement. 

 

2. Variation of normalized bi-static cross-section of the 

PEMC spheroid with the scattering angle is considered for 

various PEMC admittances and for TE polarizations of the 

incident Gaussian Beam. Variation is studied at different 

admittance angles whereas the scattering phase is kept 

constant at   

 
Figure 3: Normalized bi-static cross section variation with 

scattering angle . 

 

Above figure (3) shows the variation of normalized bi-static 

cross section with scattering angle  having scattering plane 

at . This variation is studied at admittance angles 
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as . The core size parameter is  

  and the coating 

parameters . 

As shown in figure (3) the variation of normalized bi-static 

cross section of PEMC spheroid is shown with scattering 

angle from to at different values of admittance 

parameter M. However the scattering plane is taken   

 for all the above cases. For α=0 (PMC spheroid) 

and α=90(PEC spheroid) bi-static cross section is minimum. 

While increasing α from 0 to 45 bi-static cross section 

increases at α=45 it is maximum further increasing value of α 

decreases the bi-static cross section. 

 

3. The variation of normalized backscattering cross section 

has been studied with the permittivity of dielectric medium 

for different values of admittance parameter M while keeping 

scattering angle and permeability of dielectric material 

constant. 

 
Figure 4: Variation of Bistatic cross section with permittivity 

of dielectric material having admittance angle  

 
Figure 5: Variation of Bistatic cross section with permittivity 

of dielectric material having admittance 

angle  

 
Figure 6: Variation of Bistatic cross section with permittivity 

of dielectric material having admittance 

angle  

 
Figure 7: Variation of Bistatic cross section with permittivity 

of dielectric material having admittance 

angle  

 
Figure 8: Variation of Bistatic cross section with permittivity 

of dielectric material having admittance 

angle  
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Figure 9: Variation of back scattering cross section with 

permittivity of dielectric material 

  

In figure (9) variation of back scattering cross section with 

permittivity of dielectric material is shown while having 

scattering plane , scattering angle and 

permeability .at α=15 back scattering cross section 

decreases sharply with the increase in permittivity of 

dielectric material. As admittance angle increases from 15 to 

45there is very slight change in back scattering cross section. 

When admittance angle increases from 45 to 180 back 

scattering cross section increases sharply with increasing 

permittivity.    

 

5. Conclusion 
 

Analytical expressions have derived to find out the scattering 

of Gaussian beam by PEMC spheroid coated by a dielectric 

material. An extended version of classical Mie theory is used 

which provides us two sets of six equations. By solving these 

equations we got the values of the scattering and transmitted 

co-efficient. We have observed that by introducing the 

dielectric coating around the PEMC spheroid the magnitude 

of Co and Cross components increases. If we increase the 

value of M the magnitude of co component decreases, at 

M=1 (α=45) it is half co polarized and half cross polarized 

further increase in M decreases the co component. In the 

cases of changing permittivity of coated dielectric material 

the resonance of the back scattering cross section of Co and 

Cross components varies as it is expected from physical 

consideration. 
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