
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

New Secure and Advanced Algorithm for Stream

Ciphers Extended RC4 and FPGA Implementation

Nikhil Sankar
1
, K. Kalpana

2

1 PG Scholar, Hindusthan Institute of Technology, Coimbatore 32, India

2
Assistant Professor, Department of ECE, Hindusthan Institute of Technology, Coimbatore-32 India

Abstract: RC4 is the most widely used stream ciphers uses in cryptography. A lot of modifications of RC4 cipher can be seen in open

literature. This paper mainly analysis and describe the design issue of stream ciphers in Network security and proposes a variation in

the algorithm which increases the efficiency of the algorithm. The performance evaluation of the stream cipher is done in comparison

with present stream ciphers. The focus is to generate a long unpredictable key stream with better performance, which can be used for

cryptographic applications.

Keywords: cryptography, stream ciphers, RC4 modifications, PRGA, KSA, FPGA implementation

1. Introduction

To secure information communications over the network,

different encryption algorithms have been used. The

encryption algorithms are further categorized into two broad

categories: Symmetric and Asymmetric. In symmetric

algorithms, same key is used for both encryption and

decryption. Asymmetric algorithms use different keys for

encryption and decryption. RC4, AES, DES are examples for

symmetric encryption algorithm and RSA is an example for

asymmetric encryption algorithm Stream ciphers are an

important class of symmetric encryption algorithms. Their

basic design feature is the same as that for a One-Time-Pad

cipher, which encrypts by XOR-ing the plain text with a

random key. But for a One-Time-Pad Cipher it is required to

have a key of the same size as the plain text, which makes it

impractical for most applications. While the stream ciphers

require only a short random key. This key is expanded into a

pseudo-random key stream, which is then XORed with the

plain text to generate the cipher text. Again the same key

stream is used to decrypt by XOR-ing with the cipher text to

form the plain text. The security of the stream cipher rests in

the key. So the random number generators occupy a central

place in cryptographic designs owing to their property of

picking numbers unpredictably and in using these numbers to

choose cryptographic keys.

RC4 is a stream cipher algorithm and operates on individual

bits to secure the algorithm. The speed of the encryption and

decryption is a very important aspect of security algorithms

in working with applications. A slow cryptographic algorithm

can slow the speed of an application and reduce its

effectiveness.

RC4 are used in protocols like SSL, WEP, WPA, and

applications like Skype, Remote Desktop and Microsoft

Point-to-Point. There are many other applications which use

RC4 as the encryption algorithm. It is used in hardware based

encryption mechanisms as well. Due to its light weight it has

become popular despite of various attacks on RC4 [8]. In

open literature, there are a lot of articles, which describe

various attacks on RC4 and a lot of them are theoretical [8,

10]. There are a lot of publications on hardware

implementations of RC4 to enhance performances [9]. Many

known attacks on RC4 that unveil some part of the secret

internal state, are based on fixing some elements of the S-box

with the values of i and j that give information about the

outputs at certain rounds with probability one or very close to

one. This leads in distinguishing attacks on the cipher and

helps to obtain the secret internal state with probability that is

notably larger than expected. So, the correlations between the

internal state and the external state violate the ―randomness

feature of a cipher, which leads to an unsecure

communication.

The RC4 stream cipher is implemented in hardware by P.

Kitsos, G. Kostopoulos, N. Sklavos ,and O. Koufopavlou

VLSI Design Laboratory, Electrical and Computer

Engineering Department, University of Patras, Patras, Greece

. The same hardware implementation is fast and reliable as

compared to software implementations and block ciphers

algorithms.RC4 is used for encryption in the wired equivalent

privacy (WEP) protocol (part of the IEEE 802.11b wireless

LAN security standard), IEEE 802.11 i Lotus Notes, Apple

computer's AOCE and Oracle secure SQL. The IEEE 802.11

i uses the Temporal Key Integrity Protocol (TKIP) and the

Advanced Encryption Page Layout

2. Existing System: RC4

The RC4 algorithm which was initially proposed in 1987

uses a variable length key and its operations are byte

oriented. It uses a deterministic algorithm to produce a

random permutation. The RC4 algorithm can be divided into

two phases: Key Scheduling Algorithm (KSA) and Pseudo

Random Generation Algorithm (PRGA). KSA a makes use of

the variable length key to initialize a 256 Bytes array S. This

operation is known as the initialization of the S-block. The

new key is then used to produce a random permutation of the

initialized array S. This marks the end of the KSA phase.

Once the array S has been initialized, the key is no longer

used. PRGA phase now begins. It produces a random

Paper ID: 20031505 2044

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

sequence of words from the permutation in S known as the

key stream. During the decryption process, the key stream is

then XORed with the plaintext to produce the ciphertext.

During decryption, the ciphertext is XORed with the

keystream to produce the plaintext

The logic for RC4 algorithm (KSA and PRGA) is shown

below.

Important design considerations for a stream cipher are given

below:

1) The encryption sequence should have a large period. A

pseudorandom number generator uses a function that

produces a deterministic stream of bits that eventually

repeats. The longer the period of repeat the more difficult

it will be to do cryptanalysis.

2) The keystream should approximate the properties of a true

random number stream as close as possible. For example,

there should be an approximately equal number of 1s and

0s. If the keystream is treated as a stream of bytes, then all

of the 256 possible byte values should appear

approximately equally often. The more random appearing

the keystream is, the more randomized the ciphertext is,

making cryptanalysis more difficult

3) Note from Figure 1 that the output of the pseudorandom

number generator is conditioned on the value of the input

key. To guard against brute-force attacks, the key needs to

be sufficiently long. The same considerations as apply for

block ciphers are valid here. Thus, with current

technology, a key length of at least 128 bits is desirable.

The basic working of the algorithm is shown below:

The steps for RC4 encryption algorithm are:

1) Get the data to be encrypted and the selected key.

2) Create two string arrays.

3) Initiate one array with numbers from 0 to 255.

4) Fill the other array with the selected key.

5) Randomize the first array depending on the array of the

key.

6) Randomize the first array within itself to generate the final

key stream

ATTACKS ON RC4

Many cryptanalysis of RC4 emerged after the algorithm was

made public in 1994. The cryptanalysis was divided into two

main parts, analysis of the initialization of RC4 which

focuses on the initialization of KSA and analysis of the key

stream generation which focuses on the internal state and the

round operation of PRGA. The most serious weakness of

RC4 that the probability of a zero output byte at the second

round is twice as large as expected. Fluhrer et al.[3,8] have

shown that the RC4 could be attacked completely if we can

know portion of the secret key. There is a Probabilistic

correlation between the secret information and the public

information

Crypto analysts discovered the secret key from the initial

state table using biases in the first entries of the table. They

created some equations by the initial state table. Thy guess

some of the bytes of the secret key and they obtain the rest of

the key by using these equations. In 2007, Klein[8] presented

a statistical relation between any output byte and the value of

SOl at the time of the output generation. Violeta Tomasevi

and Slobodan Bojani [10] introduced an abstraction in form

of general conditions for cryptanalytic managing of the

information about the current state of the RC4 stream cipher.

The general conditions based strategy is used to favor more

promising values that should be assigned to unknown entries

in the RC4 table. Crypto analysts have formally proved that

only a known elements of the S-box along with two index-

pointers cannot predict more than a output bytes in the next

N rounds. They have also designed an efficient algorithm to

deduce certain special RC4-states known as Non-fortuitous

Predictive States.

3. Proposed System

The design considerations of Extended RC4 are as follows:

1) Suitable for hardware or software. Uses only primitive

computational operations commonly found on

microprocessors.

2) Simple and Fast. Use simple algorithm, which is easy to

implement and eases the task of determining the strength of

the algorithm.

3) Variable number of rounds. An increase in the number of

rounds increases cryptanalytic strength. Also it increases

the encryption / decryption time. A variable number of

rounds permit the user to make a compromise between

security and execution speed.

4) The encryption sequence should have a large period. The

longer the key, the longer it takes for a brute force attack

and more difficult to do the cryptanalysis.

Paper ID: 20031505 2045

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

5) Low memory requirement. To make it suitable for devices

with restricted memory

The whole system operation is shown below:

The extended RC4 also uses the same architecture as the

existing RC4, but KSA and PRGA structure have some

variations.

PRNGs (Pseudo Random Number Generators) used here are

required to be:

1) Of maximum period to accommodate the long length of the

transmitted message.

2) Fast to speed up the process.

3) Difficult to analyze, since analysis could penetrate the

cryptographic system.

4) Capable of producing a good distribution of values.

EXTENDED RC4 Algorithm logic is

while GeneratingOutput:

 i := i + 1

 a := S[i]

 j := j + a

 b := S[j]

 S[i] := b (Swap S[i] and S[j])

 S[j] := a

 c := S[i<<5 ⊕ j>>3] + S[j<<5 ⊕ i>>3]

 output (S[a+b] + S[c⊕0xAA]) ⊕ S[j+b]

endwhile

The above algorithm can be further modified to reduce time

complexity where all arithmetic is performed using modulo

256 as follow:

while GeneratingOutput:

 i := i + w

 j := k + S[j + S[i]]

 k := k + i + S[j]

 swap values of S[i] and S[j]

 output S[j + S[i + S[z + k]]]

endwhile

Average encryption times were calculated after having

obtained encryption times in several similar number of

experiments for each plaintext data size. With the average

encryption times, the throughputs were calculated. With these

two results, performance of each algorithm can be analyzed.

Secrecy of ciphers according to the theories of Shannon.

With this analysis, a basic idea on the security level of the

algorithms has been obtained. Each algorithm was tested for

data sizes ranging from 10KB to 100KB. Average secrecy

values were calculated after having obtained secrecy values

in several similar no. of experiments for each plaintext data

size.

To compute the average time of an encryption, I simply

surrounded my encryption loop (successive encryption of the

same plaintext with the same key) with timers:

long t1 = System.nanoTime();

for (int i = 0; i < m; ++ i)

cipher.encrypt ();

cipher.print();

long t2 = System.nanoTime();

The time for one encryption is then easily computed by

subtracting t1 to t2 and dividing the results by m (the number

of iteration).

The average throughput can be calculated by the dividing the

appropriate data size by the encryption time in seconds. It is

obtains in KBps.

4. FPGA Implementation

The steps in FPGA implementation are as follows:

The architectural-design phase is surprisingly similar for

microprocessor and FPGA. It’s not unusual to perform a

"first cut" at programming in a pseudo-language that can be

translated into and refined as a specific language, say

assembly, C++, or JAVA. This architectural design was in

java language then translate it to Verilog for an FPGA.

Architectural issues could fill a book; therefore have to focus

on development issues.

Editing: can use any editor to prepare fpga.v files.

Compiling of a program for the microprocessor combines

the edited files and builds a logically correct sequence of bits

that are used to control the sequencing of logical gates. These

gates write data onto buses, into latches and registers, out

ports, and across channels. The gates have fixed relationships

designed to accomplish fixed functions. The assembly-

language instructions represent these functions. Thus

microprocessor compilers either produce assembly-language

programs that are then assembled into bit patterns or directly

produce the bits to drive the gates and fill the registers and

the memories.

Linking: The bit-based outputs of the microprocessor

compilation process typically don't directly control gates but

must be connected to other bit patterns. This is true because

most programs run under the control of an operating system

and must be connected, or linked, to the operating system. In

fact, the location in memory of the actual compiled bits is

usually unknown and not determined until linking and

loading is completed. Further, there may be programs

existing in a library that must also be linked to the compiled

program before a useful product exists.

Loading: Finally, just as embedded programs are often

embedded in physical ROM, flash, or downloaded live,

FPGA programs (compiled, synthesized, placed, and routed)

must be embedded in the physical FPGAs. The actual

programming file may be a .HEX or similar. Programmers

typically download or burn the bits from these files into the

hardware. If nonvolatile, this is a one-time proposition. If

not, it's a download-at-power-up proposition. Many

variations exist with FPGAs as with microprocessor-based

embedded systems, but in the end, in a functioning

microprocessor-based product, the bits compiled, linked, and

loaded must "get into" the physical memory to control the

gates of the processor, and in an FPGA-based functioning

product, the bits compiled, synthesized, placed, and routed,

Paper ID: 20031505 2046

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

must "get into" the FPGA, to implement the gates of the

system.

Debugging programs: All experienced programmers know

that complex programs, even subprograms, don't run

correctly the first time. In embedded systems program

development, usually uses debuggers, simulators, and

emulators to fix this. These tools enable the user to step

through the program execution and observe the effects on

flags, register contents, memory locations, and so on, and to

try to match what we expect at a given place and time with

what we see, in the simulator or emulator

Testbenches in FPGA: Most FPGA systems are standalone

systems connected to the real world, and functioning in

interaction with the real world. Therefore a large part of

debugging and test is concerned with simulating the real

world to which the FPGA will attach. In reference to the way

logic circuits were debugged historically, this is called the

testbench and is considered an integral whole—in other

words, it can be compiled as a whole. Simulation typically

steps through the operation of the testbench, which stimulates

the FPGA. The simulation process observes the

transformations and translations of signals as they propagate

through the FPGA from the input pins and provides

responses that eventually reach an output pin.

Netlist: Although it's not really a part of the process, it's

worthwhile to understand that the output of the FPGA design

process is a netlist or list of nets or wires that connect gate

outputs to other gate inputs

The FPGA programming process is as follows

5. Results

The extended RC4 algorithm is designed and then

implemented in the FPGA. Overall results of average

encryption time and throughput over data size can be

illustrated by using the result table and graphs as follows:

Table 1: Average Encryption Time Vs Data Size
Data

size(KB)

Average Encryption Time(μs)

RC4 Extended

RC4 10 3140 2630

20 6008.5 3015.5

30 7558.8 3782

40 8993 4380

50 10728.5 6300.4

60 11833 7800.5

70 13142.5 8056

80 14590.5 8210

90 16257 8412.6

100 17084 8700

Figure 1: Average Encryption Time (in microseconds) over

Data Size. Average was taken out of similar no. of

experiments for each data size. Efficient RC4 cipher

proposed in this paper shows the lesser encryption time and

the Original RC4 cipher shows the highest encryption time

almost for every data size from 10 KB to 100KB.

From the graph it is clear that the extended RC4 is far better

than the RC4 algorithm in the encryption speed

Table 2: Average Throughput Vs Data Size

Data size(KB)
Average throughput (KBps)

RC4 Extended

RC4 10 3184.72 3802.22

20 3328.61 6633.49

30 3969.02 7558.78

40 4447.82 8993.17

50 4660.21 10729.13

60 5070.21 11833.89

70 5326.27 13142.45

80 5483.02 14590.99

90 5536.35 16256.198

100 5853.43 17084.11

Figure 2: Average Throughput (in KBps) over Data Size.

Throughput was calculated by dividing the appropriate data

size by the encryption time in seconds. Thus KBps values

Paper ID: 20031505 2047

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

were obtained. The highest throughput was achieved by the

Efficient RC4 proposed

Conclusion

Firstly, this paper introduced RC4 stream cipher and several

attacks on it. Based on the weakness of the relations between

the states of S-box in RC4, we present an extended RC4 in

this paper. The new algorithm has destroyed the relations.

The new algorithm enhanced the security of RC4, and it is

faster than RC4. However, whether the improved RC4 has

other loopholes remains to be tested.

Higher values of secrecy are shown by the new stream cipher,

which means the randomness of the cipher is higher than that

of other, which is a feature of a good cipher.

Reference

[1] J. Xie, X. Pan, ―An Improved RC4 Stream Cipher‖,

2010 International Conference on Computer Application

and System Modeling, (ICCASM 2010), pp. (V7) 156-

159, 2010

[2] R. A. Rueppel. Analysis and Design of Stream Ciphers.

Springer- Verlag, 1986

[3] Rivest, R., The RC4 Encryption Algorithm. RSA Data

Security. Inc., March, 1992.

[4] RC4 algorithm for WLAN WEP protocol‖ IEEE

Transactions on control and decision conference , 2010 .

[5] Yao Yao Jiang Chong , Wang Xingwei ― Enhancing

RC4 algorithm for WLAN WEP Protocol‖ 978-1-4244-

5182-1/10/$26.00 © 2010 IEEE

[6] Stallings et al,‖Computer security: principles and

practice‖, Upper Saddle River, N.J, Prentice Hall,2008.

[7] Rick Wash, Lecture Notes on Stream Ciphers & RC4

[8] A. Klein, ―Different attacks on the RC4 stream cipher‖,

Lecture Notes, Department of Pure Mathematics and

Computer Algebra, Ghent University, Belgium.

[9] S. S. Gupta, A. Chattopadhyay, K.Sinha, S. Maitra, B.

Sinha, ―High Performance Hardware Implementation

for RC4 Stream Cipher‖, Computers, IEEE Transactions

on, vol.62, no.4, pp.730,743, April 2013 doi:

10.1109/TC.2012.19

[10] G. Paul, S. Maitra, ―RC4 State In formation at Any

Stage Reveals the Secret Key‖, Proceedings of Selected

Areas in Cryptography. LNCS, vol. 4876, no., pp.

260,377, Springer, Heidelberg 2007.

[11] Mantin, A. Shamir, "A Practical Attackon Broadcast

RC4,"FastSoftware Encryption 2001 (M.Matsui,ed.),

vol.2355 of LNCS, pp.152-164, Springer-Verlag, 2001

[12] Hardware Implementation of Modified RC4 Stream

Cipher Using FPGA Jaya Dofe1, Manish Patil2 Dept. of

Electronics, PG Student Maharashtra Academy of

Engineering, Alandi, Pune University of Pune

[13] Hardware Implementation Of The Rc4 Stream Cipherp.

Kitsos, G. Kostopoulos, N. Sklavos, and O.

Koufopavlou,VLSI Design Laboratory,Electrical and

Computer Engineering Department,University of Patras,

Patras, Greece

[14] Hardware Implementation of RC4A Stream Cipher

International Journal of Cryptology Research 1(2): 225-

233 (2009), Abdullah Al Noman, Roslina Mohd. Sidek

and Abdul Rahman Ramli

[15] Hardware Implementation of High Speed RC4

Algorithm in FPGA,International Journal of Computer

Applications (0975 – 8887) Volume 83 – No4,

December 2013

Author Profile

Mr. Nikhil Sankar, received his b. tech degree in

electronic and communication engineering from

Malabar College of Engineering and technology

affiliated to Calicut University, Kerala. Now he is

pursuing M.E in VLSI Design from Hindusthan

institute of technology affiliated to Anna University, Chennai. His

area of interests is VLSI Design and cryptography.

Mrs. K. Kalpana received her M.E degree in VLSI

Design from Karpagam.University,Coimbatore,

TamilNadu and B.E degree in electronics and

communication Engineering. From Periyar. Maniay-

ammai.College of Engineering and Technology for

Women, Affiliated to Bharathidhasan University, Thanjavur,

Tamilnadu. She has more than a decade of teaching experience in

various Engineering colleges in Tamil Nadu. Currently she is

working as an Assistant Professor in the department of ECE at

Hindusthan Institute of Technology, Coimbatore. Her area of

interests is image processing, Signal Processing and VLSI Design.

She published around 5 papers in refereed conferences and

journals.

Paper ID: 20031505 2048

