
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Detecting the Rootkit through Dynamic Analysis

D. Suganya Gandhi
1
, S. Suresh Kumar

2

 1, 2Rajalakshmi Engineering College, Anna University, Chennai, India

Abstract: Network security provides a security for all the programs or files or system. Some attackers attack a programs or files or

passwords or other personal details of the user. Like the same way Rootkit is one of the malicious file or a software which attacks a

network security and acts an administrator in an absence of the user knowledge. Rootkit virus is stealthy in nature and is installed in

the system through a file or a driver or coding. It attacks the system through the kernel-level in the real time. Files are hided through

the rootkit in the absence of the user knowledge. They can monitor the other user’s activity when the botnet is installed in the other

system. Rootkit allows the attacker through the backdoor. So that attacker can steal the users personal details. Task manager, service

and the registry are got destroyed or made changes. The attacker can make any changes at any time. Finally the malicious file and

authorized files are distinguished and their accuracy is performed.

Keywords: Malicious, Rootkit, Static analysis, Kernel-level

1. Introduction

Nowadays many malwares are very harmful so that they can’t

be easily detected and prevented. It becomes the serious issue

in the growth of the technology. The various modules regrets

with newer malwares based on that one of the important

modules is rootkit module. Over the observation overall

current malware contain 10% of rootkit may present a small

percentage of the total malware population. Among that the

rootkit is most dangerous malware. Generally rootkit is

developed as itself to hide it from rest of the modules in the

system. The malware industry has three major effects such as

hiding technology, less concerned with their size on the

victim’s hard disk and storage space on disk. It can occur in

the windows, Linux etc. It can affect all parts of the system.

The rootkit in the industry are botnet management, through

this the attacker can monitor or view all the programs or files

running on the system in the absence of the user and can act

as an administrator. It has the same privilege as the operating

system. [1].The rootkit technology in legitimate applications

that trend to employ security products, copy protection

technologies and recovery tools [2].Rootkits are discussed

based on the operation system and employs API’s to use

system services to communicate with the operating system.

Rootkit has two levels: User level and kernel level. User-

level rootkits are programs that overwrite the file system

binaries and libraries with customized versions that

accomplish the desired “hiding” goals. User level has the

ability to control and assign what users can and cannot do. It

must manage and allow access to such functions as writing

and editing posts, creating pages, defining links, creating

categories, managing plug-in, managing themes and

managing other users. It executes user-space code. It can call

into kernel code at elevated security levels. It runs on the top

of the system in user-mode [3]. Many network services these

days now run as restricted user-level process. This means

when a remote hacker breaks into such a service, they do not

get full control over the machine. They might be able to

define a web page or cause other havoc, but they do not own

the box. At this point, the intruder will need to run some sort

of privilege escalation exploit in order to root the system.

Kernel rootkits are a special category of malware that are

deployed directly in the kernel and hence have unmitigated

reign over the functionalities of the kernel itself. Next the

process use of HFS (Hidden File System) [4] and the other

firmware modification methods for a good review of rootkits

[5]. It runs on the kernel code and is not associated with a

user-space process. Kernel level runs multiple processes at a

time. It connects the application software to the hardware of

a computer. A rootkit can modify your software programs for

the purpose of infecting it with spyware. The spyware that is

installed by the rootkit is sometimes difficult to detect

however, you will notice strange things happening like links

appearing on desktop and changes in the habits of your web

browser. A back door is a modification that is built into a

software program in your computer that is not part of the

original design of the program. It creates a hidden feature in

the software program that acts like a signature so the intruder

can use the software for malicious purposes without being

detected. Bytes are constructed in a specific order which can

be modified by a rootkit. If the bytes are rearranged it

compromises the computer software protections so the

intruder can gain control of the software for malicious

purposes. Source code modification is accomplished by

modified the code in your PC's software right at the main

source. The intruder inserts malicious lines of source code

for the purpose of hacking software with confidential

information. The code can also end up in a myriad of other

programs which makes it very difficult to locate.

The most basic include searching for modified kernel

modules on disk, searching for known strings in existing

binaries, or by searching for configuration files associated

with specific rootkits. The problem is that when a system has

been compromised at the kernel level, there is no guarantee

that these tools will return reliable results. Apart from that,

they are several problems also identified and discussed

below:

Symbolic execution is a static analysis technique in which

program execution is simulated using symbols, such as

variable names, rather than actual values for input data. The

program state and outputs are then expressed as mathematical

(or logical) expressions involving these symbols. When

Paper ID: 19031505 1864

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

performing symbolic execution, the program is basically

executed with all possible input values simultaneously, thus

allowing one to make statements about the program behavior.

One problem with symbolic execution is the fact that it is,

due to the halting problem, impossible to make statements

about arbitrary programs in general. However, it is often

possible to obtain useful results in practice when the

completeness requirement is relaxed. Relaxing the

completeness requirement implies that the analysis is not

guaranteed to detect malicious instructions sequences in all

cases.

Control flow instructions present problems for our analysis

when they have two possible successor instructions (i.e.,

continuations). In this case, the symbolic execution process

must either select a continuation to continue at, or a

mechanism must be introduced to save the current machine

state at the control flow instruction and explore both paths

one after the other. In this case, the execution first continues

with one path until it terminates and then backs up to the

saved machine state and continues with the other alternative.

One problem is caused by the exponential explosion of

possible paths that need to be followed. Consider the case of

multiple branch instructions that are the result of a series of

if-else constructs in the corresponding source code. After

that, each if-else block, the control flow joins.

2. Related Work

Over the recent years various rootkits detection techniques

have been proposed from the time of first known rootkits.

The single defining characteristics of a rootkit are stealth.

Rootkit can be defined as the set of tools or programs which

patch and Trojan existing execution paths within the system.

We have discussed about various virtualization techniques on

the end user system based on some limitations [6].

Kernel Integrity checks and cross view is the two dynamic

detection approaches which are unable to detect a wide range

of rootkits. The previous work focused on malicious rootkit

driver detection which can be categorized, based on the

approach used to define the distinguishing features, as either

blind or behavior driven.

Schmidt et.al [7] deals with the gather function calls

observed in the code and select a small set as distinctive

features based on statistical analysis. Rootkit hooking

techniques often focus on passively hiding processes or files,

filter drivers are usually engaged in actively intercepting user

data. Common uses for filter drivers are logging keystrokes

or network activity to capture user passwords or other

sensitive information. When a victim visits this page, the

script is executed and attempts to compromise the browser or

one of its plug-in. To detect drive-by-download exploits,

researchers have developed a number of systems that analyze

web pages for the presence of malicious code. Most of these

systems use dynamic analysis.

That is, they run the scripts associated with a web page either

directly in a real browser (running in a virtualized

environment) or in an emulated browser, and they monitor

the scripts’ executions for malicious activity. While the tools

are quite precise, the analysis process is costly, often

requiring in the order of tens of seconds for a single page.

Therefore, performing this analysis on a large set of web

pages containing hundreds of millions of samples can be

prohibitive. One approach to reduce the resources required

for performing large-scale analysis of malicious web pages is

to develop a fast and reliable filter that can quickly discard

pages that are benign, forwarding to the costly analysis tools

only the pages that are likely to contain malicious code.

According to Sami at al. use to find the frequent API call sets

that has been the features on such approaches result in a large

number of features which results in reducing the

classification efficiency. On the other hand the existing

system have employed the fisher score, random projection,

information gain, and feature-hashing respectively, in order

to decrease the large number of features obtained and select

the more important features[8].

In Prophiler work is one which has 77 features are proposed

for finding the malicious behaviors in WebPages. Similar to

it Zhao et al. Extract a FCG (i.e. function call graph) from a

file for a malware behavior as opposed to a statistical feature

selection process. They also discussed about the semantic-

aware detection and on the detection of kernel-level rootkit

drivers by modeling improper kernel memory accesses.

Malware classifiers often use sparse binary features, and the

number of potential features can be on the order of tens or

hundreds of millions. Feature selection reduces the number of

features to a manageable number for training simpler

algorithms such as logistic regression, but this number is still

too large for more complex algorithms such as neural

networks. To overcome this problem, the project adopts

random projections to further reduce the dimensionality of

the original input space. Using this architecture, it is possible

to train several very large-scale neural network systems with

over 2.6 million labeled samples thereby achieving

classification results with a two-class error rate of 0.49% for

a single neural network and 0.42% for an ensemble of neural

networks.

Once the rootkit is publicly known, Anti-virus software can

develop a signature for it. It changes to the operating system

may be detectable using memory scans that look for changes

to critical operating system components in memory.

Therefore the advantages of the rootkit to be able to hide the

file or document and make changes over the operating system

[8].

Anomaly detection [9] has also been applied to rootkit

detection in various forms. It defines the normal system

characteristics or behavior. This detection may be used to

examine the structural characteristics of functions to detect

hooking. Table based hooking methods are also detected.

The concept of manipulating the windows kernel for stealth

started with NTRootkit-A which hooked SSDT. It extends

the idea by hooking the dispatch table. Then it became

Paper ID: 19031505 1865

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

extremely popular among rootkits and is still being used. The

rootkit authors soon realized that modifying an existing

kernel driver would benefit them further in stealth. Rootkit

quickly took advantage of this technique by overwriting less

critical drivers like beep system [10].

3. Proposed Scheme

Our proposed system is based on the modern kernel-level

rootkit behaviors by tracing it activity in the file level

systems in the kernel. By this approach we can able to

identify the sign of rootkit activity by modifying the memory

access and file system. Because there has been no prior work

which employs static analysis to extract pre-defined

behavioral features covering different kinds of kernel-level

rootkit drivers.

The proposed system deals with installing the rootkit and

affects the system and affects the other user’s activity. Our

system took Windows kernel-level rootkits by differentiating

their malicious behavior to that of the legitimate file drivers.

Our proposed system is evolved by the continuation of earlier

work such as low cost static analysis is inefficient as well as

the malware detection techniques trust the operating system

for run-time analysis by default. These systems process the

works of Static Detection of Rootkit by the behavior of

trends & File Activity. These techniques can be implemented

in kernel space, but with more constraints and limitations on

facilities it can’t be processed. Which also affects the

memory space which is shared by many other kernel modules

and the operating system itself? The above analysis, result in

simple light weight static detection technique which was

monitor by the by a user-level application. As a final result it

classifies the file system in windows kernel as either

malicious or legitimate.

The following points explain about the advantage of

proposed system:

 Extracting the predefined features of Kernel level drivers

and making them legitimate

 Windows kernel-level rootkits according to current day

trends

 Behavioral differentials between the malicious &

legitimate driver

 Memory tracking

 File modification & effectively analyzing the malicious

kernel driver

 It use headers that test terminal is permitted to send.

 Reduce the downtime and work in real networks & < 1%

of link overhead

4. Architectural Design

Kernel level connects the application software to the

hardware of a computer. It runs multiple processes, whereas

the user level executes the kernel code at the elevated

security levels. It runs kernel code and is not associated with

a user-space process. In proposed system, the rootkit is

injected and detected in the kernel level. So the kernel level

can be attacked by the rootkit through the device drivers,

device I/O, network protocols, file system and debugging

facilities. But it is very difficult to attack and detect the

kernel. Rootkit is a type of software that is designed to hide

the existence of certain processor programs. It gives the

negative idea to destroy the computer.

The system architecture explains that the kernel level can be

attacked by the file system. All the files are stored in the

database which may be pdf, document, text or exe etc. Files

are used to hide in kernel level so that the rootkit can modify

some files without the user knowledge.

If a rootkit has replaced the part of the kernel servicing those

calls, it can return all the information the system monitor

wants – except for anything relating to the rootkit. Rootkit

are installed through the code to detect the kernel. It may

affect the task manager which shows all the running

programs in the system, registry which has all the registered

or recorded files and also many services in the system.

Rootkit files are mixed with the authorized files to hide from

the user. It hides many processes running on the system.

Once the rootkit affect the files in the task manager, registry

and services, it may detect through the kernel level. It is

detected by using the rootkit removal tool so that it list out

the modified files.

Antivirus programs are very poor at detecting rootkits on a

running system. This ability to operate invisibly within the

operating system means that a major use of rootkits is to

conceal other malware. Some rootkits may disable antivirus

software. The best way of detecting the rootkit in the

operating system is to shut down the operating system itself

and examine the disk upon which it is installed.

Figure 1: System Architecture

Paper ID: 19031505 1866

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

5. Methodology

The implementation section has several phases on the initial

stage is on OS model. The window kernel system is analyzed

and the total resources are traced and stored in the database.

The overall resource availability is monitored at the initial

stage. We first we observe a range of trends in the

functionalities provided by rootkit. The functions included in

that are injection, file system behavior, kernel memory over-

writing and file system modifying. In which a malicious may

have one or more of the above noted functionalities

implemented in the system. Some of the noted functionalities

are;

1. Injection

2. File Activity

3. Installing Rootkit on Windows

4. Rootkit on the Oracle VM

5. File Monitoring

4.2.1 Injection

Injection is a kind of patching a repair module in the kernel

level as the most popular behaviors in rootkits. There are

various methods to inject into user-level processes one is

inject a desired code via allocation of Virtual Memory

another is creating and mapping of a new section into a

process memory space. By tracing the memory behavior the

anomality of the hidden rootkits is captured.

4.2.2 File Activity

As stated on the earlier stage the windows kernel system and

the overall resource availability is stored in the database. The

overall behavior is monitored if the hidden rootkit had

change the behavior of the file activity in the system than it

was traced and the anomalistic behavior is rectified to

achieve a free from malware OS model by our proposed

system. It can be achieve by Windows does include some

function calls for accessing files for situations like when a

driver is going to update hardware or software that should be

handled carefully. So the rootkit may indulge to handle or

modify a file including logs and/or spying data, or alter file

access times so such behavior should be traced and observed

on the system.

4.2.3 Installing Rootkit on Windows

Once the control panels are installed on the system, it starts

the front end and back end of the panel. While starting the

control panel, it switches on the port number and port id for

the easy reference. Create the database in the name of the

bot. When the database is created it starts the execution in the

file or folders or in the program. Once the rootkit is installed

in the name of the bot it may affect any of the files or may

affect the system

4.2.4 Rootkit on the Oracle VM

Like the same of the rootkit installed in the windows, also the

oracle vm can also install the rootkit as the same way. The

difference between the oracle VM and windows is the rootkit

alone installed in windows whereas the oracle installs the

rootkit with the anti-virus.

4.2.5 File Monitoring

After installing the rootkit, the attacker monitors the other

user activity through the botnet. Attacker monitor others

activity in the absence of the user. Rootkit itself act as an

administrator.

5. Discussion

The rootkits are various types our proposed system

effectively detect malicious rootkit drivers accurately but

approach will not be effective for all the rootkits. In the

kernel space without deploying any driver un-patched

vulnerabilities could be employed by the rootkit. The rootkits

in the hidden file systems which can be load them into

memory on each boot. There is any kind of penetration into

kernel space should done or not must be noted. The kernel

vulnerabilities, requires at least an initial kernel driver to be

loaded based on that we can able to detect the loader kernel

driver at the beginning of the process. The proposed static

analysis technique needs number of assumptions which

makes anything loaded on the system otherwise it protected

by Kernel-level self-protection solutions. The changes in the

feature category show the rootkit attack that happened on file

system or not.

6. Conclusion

On this static analysis for detecting kernel-level rootkits two

observations are made such that windows kernel level space

and another one is kernel level code. Among the observation

the proposed system enables the rootkit detection in

malicious drivers. In our static analysis approach the main

advantage is as in dynamic analysis, is that it does not require

the binary being analyzed to be executed. On it’s the general

behavior of the rootkit shows the level of suspicious activity

present, such as hiding intent. Which traces effectively if any

behavior happened in the file system by the rootkit would

examined by its various features. In future this work must be

continued on dealing with various driver modules on the

operating systems.

7. Acknowledgement

Our completion of this paper could not have been

accomplished without the support of staff members those

who are working with us. We are very much thankful to

them. For the reference, we refer many articles and research

papers of many authors and institutions those are available in

online and offline. We offer our sincere appreciation for the

learning opportunities provided by those authors and

institutions. At last but not least, our heartfelt thanks to all

our family members for caring us and for the huge support.

References

[1] A. Kapoor and R. Mathur, “Predicting the future of

stealth attacks,” in Virus Bulletin conference, 2011.

[2] (2012) Zegost - analysis of the Chinese backdoor.

[Online].Available:

http://artemonsecurity.blogspot.com/2012/12/ zegost-

analysis-of-chinese-backdoor.html

Paper ID: 19031505 1867

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 3, March 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[3] P. Gutmann, “The commercial malware industry,” in

DEFCON conference, 2007.

[4] F. Op. (2008) the fu rootkit. [Online]. Available:

http://www.hackerzvoice.net/ceh/CEHv6%20Module%

2007% 20System%20Hacking/FU Rootkit/

[5] F.-S. Lab. (2005) Cut’n’paste rootkit-bots. [Online].

Available:http://www.fsecure.com/weblog/archives/000

00559.html

[6] S. S. Response. (2005) W32.mytob.ar. [Online].

Available: http://www.symantec.com/security

response/writeup.jsp?docid=2005-041116-0718-99

[7] K. Kasslin, M. St°ahlberg, S. Larvala, and A. Tikkanen,

“Hiden seek revisited–full stealth is back,” in

Proceedings of the 15th Virus Bulletin International

Conference, 2005.

[8] J. S. Center. Ghost security suite ssdt hooks multiple

local vulnerabilities. [Online]. Available:

http://www.juniper.net/security/auto/vulnerabilities/vul

n25709.html

[9] Kaspersky internet security 6 ssdt hooks multiple local

vulnerabilities. [Online]. Available:

http://www.juniper.net/security/auto/vulnerabilities/vul

n24491.html

[10] M. Russinovich. (2011) Using rootkits to defeat digital

rights management. [Online]. Available:

http://blogs.technet.com/b/markrussinovich/archive/200

6/02/06/using-rootkits-to-defeat-digital-rights-

management.aspx

[11] (2011) Returnil ssdt hooks listed as ¡unknown¿.

[Online].Available:http://www.wilderssecurity.com/sho

wthread.php?t=303964

[12] V. Rusakov. (2011) Legit bootkit. [Online].

Available:https://www.securelist.com/en/analysis/2047

92203/Legit bootkits

[13] E. Rodionov. (2012) Win32/gapz: New bootkit

technique. [Online]. Available:

http://www.welivesecurity.com/2012/12/27/win32gapz-

new-bootkit-technique/

[14] E. Rodionov and A. Matrosov, “Defeating anti-

forensics in contemporary complex threats.”

[15] S. Embleton, S. Sparks, and C. C. Zou, “Smm rootkit: a

new breed of os independent malware,” Security and

Communication Networks, 2010.

[16] D. Zovi, “Hardware virtualization-based rootkits,”

Black Hat USA, 2006.

[17] S. Sparks, S. Embleton, and C. Zou, “Windows rootkits

a game of hide and seek,” Handbook of Security and

Networks, p. 345, 2011.

[18] C. Kruegel, W. Robertson, and G. Vigna, “Detecting

kernel-level rootkits through binary analysis,” in

Computer Security Applications Conference, 2004.

20th Annual. IEEE, 2004, pp. 91–100.

[19] McAfee. (2011) Root out rootkits, an inside look at

mcafee deep defender. [Online]. Available:

hhttp://www.intel.ph/content/www/xa/en/enterprise-

security/mcafee-deep-defender-deepsafe-rootkit-

protection-paper.html

[20] S. Grobman et al., “Method and apparatus to detect

kernel mode rootkit events through virtualization

traps,” Nov. 30 2010, us Patent 7,845,009.

Author Profile

Suganya Gandhi.D is currently a PG scholar in

Computer Science and Engineering from the

Department of Computer Science at Rajalakshmi

Engineering College, Chennai. She received his

Bachelor Degree in Computer Science and Engineering

from S.A Engineering College, Chennai and Tamilnadu. Her

Research areas include Wireless Networks and Distributed

Computing.

Paper ID: 19031505 1868

