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Abstract: The main objective of this paper is to construct a time series model to monitor and forecast the life expectancy at birth in 

Sudan. To achieve this objective, a series of life expectancy at birth ranged from 1990 to 2013was obtained from the Sudan Central 

Bureau of statistics and United Nation Annual Reports, time series analysis technique mainly box and Jenkins were used to find the 

required model .Analysis done by e-views package. The paper conclude that The most proper time series model to forecast the life 

expectancy at birth in Sudan is the ARIMA model, The highest forecasted Life Expectancy at Birth in the Sudan for the coming ten 

years will be attained in year 2023 as 66.4835 years and finally The life expectancy at Birth in Sudan is increasing at a decreasing rate. 
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1. Introduction 
 

Life expectancy (LE) is the expected number of years of life 

remaining at a given age (x), while the Life Expectancy Index 

(LEI) is a statistical measure used to determine the average lifespan 

of the population of a certain nation or area.  

   MinMaxMinActualLEI  /  

Where, the goalpost of the life expectancy was determined 

by the UN as (85) Years for the maximum and (25) years for 

the minimum. 

 

The industrial and agricultural revolution, as well as 

increased income levels led to improved nutrition and better 

access to drinking water and sanitation which increase the 

Europeans population's life expectancy in the 20
th

 century 

and then spread to all countries that are today considered as 

developed, 

 

The aim of the study is to find out a time series model based 

on annual basis for the life expectancy at birth in Sudan for 

the period 1990-2013. The importance of this study 

concentrated at the serious need of constructing a time series 

model for the future forecast to detect the pattern of change 

in the life expectancy at birth which helps to analyze the 

factors that affecting the Sudan life expectancy at birth. 

 

2. Theoretical Framework  
 

Time series analysis techniques, namely Box and Jenkins 

technique was used, the series extends over the period 1990-

2013, which is fairly long; Autoregressive Integrated 

Moving Average (ARIMA) was chose forthe analysis. 

 

2.1 Time Series Components 

 

Time series consists of several components, which are: 

1) Trend 

2) Cyclical Variations. 

3) Seasonal Variations. 

4) Irregular fluctuations.  

 

2.2 Time Series Decomposition Model 

 

If a time series exhibits trend effects and seasonal effects, it 

can be useful to decompose it in order to isolate these 

effects. One model that allows us to do this is the 

multiplicative decomposition model, it’s the most popular 

decomposition model, and it’s expressed as follows: 

ttttt ICSTY ***  

Also there is decomposition model known as the additive 

model, which expressed as follows:  

ttttt ICSTY   

Where: 

Yt: The observed value of the time series in time period t. 
Tt:The trend components in time period t. 

St:The seasonal components in time period t. 

Ct:The cyclical componentsin time period t. 

It: the erratic components in time period t. 

 

2.3 Forecasting Methods 

 

There are many forecasting methods that can be divided into 

two basic types which are: 

a) Qualitative Forecasting Methods 

Qualitative forecasting methods generally use the 

opinion of the expert to subjectively predict future 

events. 

b) Quantitative Forecasting Methods 

Quantitative forecasting models are grouped into two 

main models, which are: 

 

(I) Univariate Models 

Univariate models predict the future events of time series on 

the basis of the past values of the time series (Powerman, 

1979). When a univariate model is used; historical data are 

analyzed in an attempt to identify a data pattern, then 

assuming that it will continue in the future. Univariate 

forecasting models are most useful when conditions are 

expected to remain the same. 

 

(II) Causal Models 

The use of such models involves the identification of other 

variables that are related to the variable to be predicted, once 

these related variables have been identified, a statistical 

model that describes the relationships between these 

variables and the variable to be forecasted is developed. The 

statistical relationship derived is then used for forecasting 

the variable of interest. 

 

Generally we can say that quantitative forecasting methods 

are used when historical data are available univariate models 
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predict future values of the variable of interest on the basis 

of historical pattern of that variable, assuming the historical 

pattern will continue; causal models predict future values of 

the variable of interest based on the relation between that 

variable and other variables. Qualitative forecasting 

techniques are used when historical data are scarce or not 

available at all and depend on the opinions of experts  

 

2.4 Choosing the Forecast Technique 

 

In choosing the forecasting technique the forecaster must 

consider the following factors 

1. The nature of the study variable. 

2. The time frame. 

3. The pattern of data. 

4. The cost of forecasting. 

5. The accuracy desired. 

6. The availability of data. 

7. The ease of operation and understanding. 

 

The first factor to be considered in choosing a forecasting 

method is the form in which the forecast is desired i.e. 

determine whether the forecaster will use point or interval 

forecast. The second factor that can influence the choice of 

forecasting method is the time frame of the forecasting 

situation. Forecast are generated for point in time may be a 

number of days , weeks, months, quarters or years in the 

future. This length of time is called the time frame; the 

length of the time frame is usually categorized as follows: 

1. Immediate less than month. 

2. Short term more than three months to less than two years. 

3. Long term two years or more. 

 

The length of the time frame influence the choice of 

forecasting technique, typically a longer time frame makes 

accurate forecasting more difficult. The pattern of data must 

also be considered when choosing forecasting model. Thus, 

it is important to identify the existing data pattern. One of 

the most important factor that affect the choice of 

forecasting technique is the desired accuracy of the forecast, 

the availability of information and last the ease with which 

the forecasting method is operated and understood is 

important. 

 

2.5 The Box-Jenkins Methodology 

 

This methodology developed by G. E. P. Box and G. M. 

Jenkins, consists of four basic steps. The first step, called 

tentative identification step, involves tentatively identifying 

a model. Once a model has been identified, we estimate the 

model parameters in the second step that called the 

estimation step. The third step is called the diagnostic 

checking step, here we check the adequacy of the model, if 

the model proves to be inadequate, it must be modified. 

When a final model is determined, we use the model to 

forecast future time series values; this fourth step is called 

the forecasting step. 

 

There are many Box-Jenkins models; these models can be 

grouped into the following three basic classes: 

(A) Autoregressive models. 

(B) Moving average models. 

(C) Mixed autoregressive- moving average models. 

Box-Jenkins models are often called ARIMA models 

[Autoregressive Integrated Moving Average]. The 

Univariate Box – Jenkins models have proven to provide 

accurate forecast in short term forecasting applications. 

 

2.6 Stationary and Non-Stationary Time Series 

 

The classical Box – Jenkins models describe stationary time 

series, thus in order to tentatively identify a Box – Jenkins 

models, we must first determine whether or not a time series 

under investigation is stationary, if it is not, we must 

transform it into a series of stationary time series values 

either by using the log or the reciprocal. A time series is said 

to be stationary if the statistical properties such as mean and 

variance of time series are constant through time , if we have 

observed n values y1, y2, y3, …., yn , of a time series, we can 

use a plot of these values against time to help us to 

determine whether the time series is stationary or not. If the 

n values seem to fluctuate with constant variation around a 

constant mean, then it is reasonable to believe that the time 

series is stationary, if the n values do not fluctuate with 

constant variation, then it is reasonable to believe that the 

time series is no stationary. If we decided that the time series 

is not stationary we can transform it from non-stationary to 

stationary by taking the first differences of the non-

stationary time series. 

 

2.7Unit Root Test -Augmented Dickey-Fuller (DF) Test 

 

 
Unit root test is designed to test whether the time series data 

are stationary or not. Stationary time series data have the 

following characteristics: 

1) Constant mean. 

2) Finite variance. 

3) The Correlogram diminishes as lag length increases. 

 

The DF unit root test is based on the following regression 

forms: 

1. Without Constant and Trend 


ttt YY 

1  

2. With Constant 


ttt YY 
1  

3. With Constant and Trend 


ttt YY T 

1
 

Where:  is constant,  and   are the coefficients of the 

model. 

 

2.8DF Unit Root Test Hypothesis 

0:

0:

1

0









H
H  

 

2.9. Decision Rule 
 

 

If t*>ADF critical value, accept the null hypothesis. (Unit 

root exist). 

Ift* >ADF critical value, reject the null hypothesis. (Unit 

root not exist). 

Paper ID: SUB151780 2376



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 

Volume 4 Issue 2, February 2015 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

 

2.10Test of Serial Correlation 

 

The Correlogram test the serial autocorrelation under the 

following  

Hypothesis: 

If Prob. > 0.05 we accept H0, which means serial correlation 

does not exist. 

If Prob. < 0.05 we reject H0, which means serial correlation 

exist. 

 

3. Empirical Analysis 
 

3.1 Calculation of Life Expectancies 

 

The starting point for calculating life expectancies is the 

age-specific death rates of the population members which 

defined as the number of death in a particular age group per 

1000 population in the age group.  

 
Where: 

ASDR: Age specific death rate. 

Yi: Number of deaths for age group i. 

Pi:Number of population for age group i. 

The age-specific death rates are calculated separately for 

separate groups of data which are believed to have different 

mortality rates (e.g. males and females, and perhaps smokers 

and non-smokers if data is available separately for those 

groups) and are then used to calculate a life table, from 

which one can calculate the probability of surviving to each 

age. 

 
Figure 1: Life Expectancy at Birth 

Figure (1) shows that the LE series is not stationary, there is 

an increasing trend. 

 

Table 1: Augmented Dickey-Fuller Test 
ADF Test Statistic -6.900869 1% Critical Value* -2.6889 

  5% Critical Value -1.9592 

  10% Critical Value -1.6246 

Augmented Dickey-Fuller Test Equation 

Dependent Variable: D(LE,3) 

Method: Least Squares 

Sample(adjusted): 1994 2013 

Included observations: 20 after adjusting endpoints 

Variable Coefficient Std. Error t-Statistic Prob. 

D(LE(-1),2) -2.047083 0.296641 -6.900869 0.0000 

D(LE(-1),3) 0.680290 0.194990 3.488846 0.0026 

R-squared 0.766825 Mean dependent var 2.13E-15 

Adjusted R-squared 0.753871 S.D. dependent var 2.347451 

S.E. of regression 1.164604 Akaike info criterion 3.237279 

Sum squared resid 24.41344 Schwarz criterion 3.336852 

Log likelihood -30.37279 F-statistic 59.19518 

Durbin-Watson stat 2.247464 Prob(F-statistic) 0.000000 

Table (1): Shows that the computed ADF test-statistics -

6.900869is less than the critical values of “tau”(-2.6889, -

1.9592, -1.6246)at 1%, 5% and 10% significant level 

respectively, the Durbin-Watson test is around 2, therefore 

we reject H0 and accept H1 which mean that the Life 

Expectancy at birth Series is stationary at the second 

difference . 

 

Table 2: Second Difference Correlogram 
Date: 02/19/15 Time: 23:37 

Sample: 1990 2013 

Included observations: 22 

Autocorrelation 
Partial 

Correlation 
 AC PAC Q-Stat Prob 

.**| . | .**| . | 1 -0.218 -0.218 1.1984 0.274 

****| . | *****| . | 2 -0.518 -0.594 8.2865 0.016 

. |* . | .**| . | 3 0.172 -0.225 9.1039 0.028 

. |* . | .**| . | 4 0.154 -0.275 9.8008 0.044 

.**| . | ***| . | 5 -0.203 -0.401 11.075 0.050 

. |**. | . | . | 6 0.225 0.052 12.739 0.047 

. | . | . *| . | 7 -0.022 -0.173 12.756 0.078 

. *| . | . | . | 8 -0.170 0.022 13.841 0.086 

. |* . | . | . | 9 0.088 0.049 14.155 0.117 

. *| . | ***| . | 10 -0.080 -0.326 14.435 0.154 

. | . | . *| . | 11 -0.023 -0.152 14.461 0.209 

. |**. | . *| . | 12 0.254 -0.121 17.876 0.120 

Table (2) shows that the Prob. Increases as the lag increase, 

which is a good indicator for the absence of serial 

autocorrelation at the second difference. 

 
Figure 2:Second difference Life Expectancy at birth  

 

Figure (2): shows that the Life Expectancy at birth series is 

stationary at the second difference. 

 

Table 3: Model Estimation 

Dependent Variable: LE 

Method: Least Squares 

Date: 02/20/15 Time: 00:06 

Sample(adjusted): 1991 2013 

Included observations: 23 after adjusting endpoints 

Convergence achieved after 11 iterations 

Backcast: 1989 1990 

Variable Coefficient Std. Error t-Statistic Prob. 

C 48.88873 0.925353 52.83250 0.0000 

@TREND 0.533175 0.061732 8.636868 0.0000 

AR(1) 0.638472 0.226874 2.814209 0.0111 

MA(2) -0.682086 0.250851 -2.719092 0.0136 
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R-squared 0.953682 Mean dependent var 55.46957 

Adjusted R-squared 0.946369 S.D. dependent var 3.526192 

S.E. of regression 0.816607 Akaike info criterion 2.589453 

Sum squared resid. 12.67009 Schwarz criterion 2.786931 

Log likelihood -25.77871 F-statistic 130.4040 

Durbin-Watson stat 1.830922 Prob(F-statistic) 0.000000 

Inverted AR Roots .64 

Inverted MA Roots .83 -.83 

 

Table (3) shows the estimated coefficients are statistically 

significant under a 5% level of significance. The overall 

regression fit, as measured by the R
2
 statistics 

(R
2
=0.953682), indicate a good fit. Since the Durbin Watson 

value is (1.830922) which is around (2) it means that there is 

no serial autocorrelation. The Akaike, Schwarz criteria 

(2.589453, 2.786931) indicate that the C @trend AR (1), 

MA (2) model should be preferred because they have the 

least values among the different models which can be fitted. 

The Prob. (F-statistics=0.000000) indicate that the whole 

model is statistically significant under 5% level of 

significance. 

 

Estimation Command 
LS LE C @TREND AR (1) MA (2) 

 

Estimation Equation 

LE = C(1) + C(2)*(@TREND) + 

[AR(1)=C(3),MA(2)=C(4),BACKCAST=1991] 

 

Substituted Coefficients 

LE = 48.88872796 + 0.5331749871*(@TREND) + 

 [AR (1)=0.63847151,MA(2)= 

-0.6820864342,BACKCAST=1991] 

 
Figure 3: Fitted, Actual and Residual Life Expectancy at 

Birth 

Figure (3) shows that the fitted values have no significant 

difference from the actual one. 

 

Table 4:Actual,Fitted Life Expectancyat Birth 
Year Actual Life 

Expectancy 

Estimated Life 

Expectancy 1990 51.00000 48.88873 

1991 50.80000 49.42190 

1992 50.80000 49.95508 

1993 50.80000 50.48825 

1994 51.20000 51.02143 

1995 53.00000 51.55460 

1996 53.20000 52.08778 

1997 51.00000 52.62095 

1998 52.20000 53.15413 

1999 55.00000 53.68730 

2000 55.40000 54.22048 

2001 55.60000 54.75365 

2002 56.00000 55.28683 

2003 55.40000 55.82000 

2004 55.50000 56.35318 

2005 56.40000 56.88635 

2006 56.50000 57.41953 

2007 57.40000 57.95270 

2008 57.40000 58.48588 

2009 57.90000 59.01905 

2010 58.90000 59.55223 

2011 61.50000 60.08540 

2012 61.80000 60.61858 

2013 62.10000 61.15175 

 

Table 5: Estimated Life Expectancy Index 

Year 
Estimated Life 

Expectancy 

Estimated Life 

Expectancy Index 

Change Rate of the 

Estimated Life 

Expectancy 

1990 48.88873 0.398146 ------ 

1991 49.42190 0.407032 0.022319 

1992 49.95508 0.415918 0.021832 

1993 50.48825 0.424804 0.021365 

1994 51.02143 0.433691 0.020919 

1995 51.55460 0.442577 0.02049 

1996 52.08778 0.451463 0.020079 

1997 52.62095 0.460349 0.019683 

1998 53.15413 0.469236 0.019303 

1999 53.68730 0.478122 0.018938 

2000 54.22048 0.487008 0.018586 

2001 54.75365 0.495894 0.018246 

2002 55.28683 0.504781 0.01792 

2003 55.82000 0.513667 0.017604 

2004 56.35318 0.522553 0.0173 

2005 56.88635 0.531439 0.017005 

2006 57.41953 0.540326 0.016721 

2007 57.95270 0.549212 0.016446 

2008 58.48588 0.558098 0.01618 

2009 59.01905 0.566984 0.015922 

2010 59.55223 0.575871 0.015673 

2011 60.08540 0.584757 0.015431 

2012 60.61858 0.593643 0.015197 

2013 61.15175 0.602529 0.014969 

 

Table 6: Forecasted Life Expectancy at Birth and 

Forecasted Life Expectancy Index 

Year 

Forecasted 

Life 

Expectancy 

Forecasted Life 

Expectancy 

Index 

Change Rate of the 

Forecasted Life 

Expectancy 

2014  61.68493 0.611416 0.014748 

2015  62.21810 0.620302 0.014534 

2016  62.75128 0.629188 0.014326 

2017  63.28445 0.638074 0.014123 

2018  63.81763 0.646961 0.013927 

2019  64.35080 0.655847 0.013735 

2020  64.88398 0.664733 0.013549 

2021  65.41715 0.673619 0.013368 

2022  65.95033 0.682506 0.013192 

2023  66.48350 0.691392 0.01302 

Tables (5 and 6): shows that the estimated and forecasted 

Life Expectancy at Birthwere increasing at a decreasing rate. 
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4. Conclusion 
 

4.1 Results  
 

1) Themost proper time series model to forecast the life 

expectancy at birth in Sudan is the ARIMA model. 

2) The general trend of lifeexpectancy index in Sudan is 

increasing over time. 

3) 3.The highest forecasted Life Expectancy at Birth in the 

Sudan for the coming ten years will be attained in year 

2023 as 66.4835 years. 

4) The life expectancy at Birth in Sudan is increasing at a 

decreasing rate. 

 

4.2 Recommendations 

 

Given the aforementioned findings, following policy 

recommendations are in order.  Provision of free health 

services and improvement of primary health care at a higher 

rate than the one prevailed in the past by: 

1. Not depriving the needy ones from getting appropriate 

health care. 

2. Reducing maternal mortality rates, HIV and Malaria 

diseases. 

3. Construction of new hospitals, health centres and 

offering training programmes for those who work in the 

medical fields such as doctors, nurses, laboratories 

technicians. 
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