
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 2, February 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Multiple Prevention Techniques for Different

Attacks in Web Application

Tejal V. Kasture
1
, Pinaki P. Dixit

2
, Pooja S. Ovhal

3
, Gayatri Sathe

4
, Neelam A. Zambre

5

Department of Information Technology, Faculty of Engineering, Savitribai Phule Pune University, Padmbhooshan Vasantdada Patil

Institute of Technology, Bavdhan, Pune, India

Abstract: Nowadays Internet is spreading throughout the world in a boom. Internet provides us so many possible and daily chores

sitting at home, office or any work place. But as a coin has two sides, Internet also has its disadvantages. Using Internet people known

as hackers, frauders etc. can get access to the confidential data of any person sitting anywhere on this globe. We cannot assure that

using internet could be safe or secure. In order to get access to the account, database of any person and hack the confidential data,

hackers use different kind of attacks like SQL injection, cross site scripting, URL attack and cookies attack for the same. By these

attacks, hackers may get the inaccessible information; they may even change the data and cause the theft. As these attacks are

preventable and detectable, solution of these attacks are provided by this paper by rewriting the cookies with each and every process

performed on the database, when we access it using Internet. The proposed system also detects and prevents attacks like XSS and SQL

injection to protect the restricted data from the attackers.

Keywords: Cookies, Cross Site Scripting (XSS), SQLIA.

1. Introduction

For the prevention of cookie attack the most widely used

technique is called “Dynamic Cookies Rewriting”, the

objective of this technique is to render the cookies useless for

XSS attacks [1]. This suggested technique is implemented in

a web proxy where the cookies are rewritten automatically

and then sent to the web application and the users. Using this

technique the cookies at the browser side would not be valid

for the web application and due to this the XSS attack will

not be able to impersonate the users using stolen cookies.

The paper [2] is a survey of various types of different attacks

such as SQL Injection attack, cookie attack and XSS attack.

This paper has also surveyed the respective detection and

prevention techniques which can be used to prevent attacks.

In short the paper is based on the survey. The XSS is

performed and also prevented [3]; this paper suggests the

client side solution to resolve the cross site attack. The client

side solution uses a step by step approach to secure cross site

scripting, without wasting much of the user‟s web browsing

experience. Here the JavaScript engine is used instead of

transformation on HTML. In general, the system successfully

prohibits and removes a variety of XSS attacks, maximizing

the protection of web applications.

The remainder of this paper is organized as follows. Section

II discusses topics which are related to a proposed approach:

XSS attack, SQLIA, Cookie mechanism, a concept of a Web

Proxy. Section III presents the proposed approach. The

proposed approach is evaluated in section IV, and discussion

about challenges in section V. The conclusion and the brief

of future work are described in Section VI.

2. Background

2.1 Cookie

Cookie is mechanism for remembering user‟s state and

activities. It enables the session management over the HTTP

protocol. Web applications often use cookies for maintaining

an authentication state between users and web applications,

these cookies are typically sent to the users by the web

applications after the users have been successfully

authenticated [1]. Stolen Cookie Attack is a type of XSS

which is performed to steal cookies from browser side. An

attacker executes malicious script to steal the cookies from

user‟s browser and uses them for unauthorized access of

confidential data. For Example, if the victim is accessing

www.bank.com in order to do an online transaction, on the

same time the victim may also be accessing

www.attacksite.com, and be persuaded into clicking on the

link below:

<SCRIPT>

document.location =„http://www.attacksite.com/

stealcookie.php?‟+document.cookie;

</SCRIPT>”>

Click here to win a million dollars.

When the victim clicks on the link, the malicious script will

be sent to the web server (www.bank.com) as a requested

page.

Once the web server cannot find the requested page, it will

usually return an error page. The web server may also decide

to include a name of the requested page in the error page

which is actually the malicious script. When the malicious

script is executed on the victim‟s browser, the cookies of the

www.bank.com will then be sent to the www.attacksite.com.

An owner of the www.attacksite.com can use those cookies

to impersonate the victim with respect to the www.bank.com

[1]. Another cookie attack is persistent or stored cookie

attack means that the malicious code is persistently stored in

a server‟s storage, and may later be embedded in an HTML

page sent to the victim. To consider a script shown in Figure

2 which it is posted on an online message board of the

www.bank.com.

Paper ID: SUB151730 2137

http://www.bank.com/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 2, February 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Click here to see a new promotion.

<SCRIPT>

document.images[0].src=http://www.attacksite.com/

images.jpg? Stealcookie+ document.cookie;

</SCRIPT>

The victim who reads a message will receive the malicious

script as a part of the message. The victim‟s browser will

then execute the malicious script which will later send the

cookies of the www.bank.com to the www.attacksite.com+.

Again the malicious script can read the cookies of the

www.bank.com because it was loaded from the

www.bank.com which has the same origin as the cookies [1].

Protection of Cookies

1) IP Mapping: The web server maps IP addresses of the

users with the cookies and denies any access that comes

from invalid IP addresses. This helps to mitigate the

problem but it does not work where the users access the

Internet through the web proxy [1].

2) HttpOnly Attribute: HttpOnly attribute is a Microsoft

extension; it can also be included in the cookies before

being sent to the browser. With the HttpOnly attribute, the

browser will deny scripting languages to access those

cookies. The HttpOnly attribute is originally not a part of

the HTTP; the browsers that are not aware of this attribute

will ignore it and will consequently remain vulnerable [1].

3) Secure Cookies: Secure cookies mean that the clients and

the web servers only send the cookies via the SSL

connections. When using the SSL, all requests and

responses are encrypted including the cookies. This can

protect the cookies from sniffing whenever they are sent

across the network; however this cannot protect the

cookies on the browser itself [1]. Above solutions cannot

assure that the cookies will be safe from the various types

of cookie attack. This paper proposes a new approach to

protect the cookies by rewriting it using MD5 scheme.

2.2 SQL Injection Attack

Without proper safeguards, applications are vulnerable to

various forms of security attack. One particularly pervasive

method of attack is called SQL injection. Although SQL

injection is most commonly used to attack websites, it can

also be used to attack any SQL database. A SQL Injection

Attack usually starts with identifying weaknesses in the

applications where unchecked users‟ input is transformed

into database queries. The attacker provides SQL code to a

user input box of a Web form to gain information access

from databases. The attacker‟s input is transmitted into an

SQL query in such a way that it will form an SQL code [8].

Following is a one of the example of SQL Injection code:

“SELECT * FROM user

WHERE name =‟ ‟ OR „1‟=‟1‟ - -„;

SQLIA Prevention Techniques

2.2.1 Static Taint Analysis

Livshits and Lam use a static taint analysis approach to detect

code that is vulnerable to SQLIAs. This approach checks

whether user input can reach a hotspot and flags this code for

developer intervention. A further extension to this work

securely detects vulnerable code and automatically adds calls

to a sanitization function. This automated defensive coding

practice, while effective in some cases, would not prevent all

types of SQLIAs. In particular, it would not prevent SQLIAs

that inject malicious text into numeric non quoted fields [7].

2.2.2 Proxy Filters

This technique is used to prevent the malicious contents.

Security Gateway uses a proxy filter to enforce input

validation rules on the data that reaches a web application.

Using a descriptor language, developers create filters that

specify constraints and transformations to be applied to

application parameters as they flow from the web page to the

application server. By creating appropriate filters, developers

can block or transform potentially malicious user input. The

effectiveness of this approach is limited by the developer's

ability to identify all the input streams that can affect the

query string and determine what type of filtering rules should

be placed on the proxy [7].

2.2.3 Intrusion Detection System

Valeur and colleagues propose the use of an Intrusion

Detection System (IDS) to detect SQLIAs. Their IDS is

based on a machine learning technique that is trained using a

set of typical application queries. The technique builds

models of normal queries and then monitors the application

at runtime to identify queries that do not match the model.

The fundamental limitation of learning based techniques is

that they cannot provide guarantees about their detection

abilities because their success is dependent on the use of an

optimal training set. Without such a set, this technique could

generate a large number of false positives and negatives [7].

So in order to overcome, the paper proposes a new approach

to detect and prevent SQLI attack.

2.3 XSS Attack

Cross-Site Scripting attacks are those attacks against web

applications in which an attacker gets control of the user‟s

browser in order to execute a malicious script (usually an

HTML (Hyper Text Markup Language)/JavaScript code)

within the context of trust of the web application‟s site [9].

XSS works as an interaction with active server content, any

form of input should be filtered if it is ever to show up in an

html page. The default example, and the easiest to exploit, is

parameters passed in through query string arguments that get

written directly to page. These are enticingly easy because all

of the information can be provided directly in a clickable link

and does not require any other html to perform [9].

Examples for XSS Attacks:

Using body tag

<BODY onload!#$%&()*~+-_.,:;?@[/|\]^`=alert("XSS")>

Double open angle brackets

<iframe src=http://ha.ckers.org/scriptlet.html<

<IFRAME SRC="JavaScript: alert('XSS');"></IFRAME>

Paper ID: SUB151730 2138

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 2, February 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

XSS Prevention Techniques

2.3.1 Client side proxy

It is implemented as a client-side proxy that compares

requests and responses and disables them if malicious

characters are detected. It was fairly primitive, however, and

relied mostly on heuristics and had no learning component.

Also, it was able to protect only against rejected cross-site

scripting attacks. It does not prevent cross-site request

forgery attacks or other complex cross-site attacks [10].

2.3.2 Code-rewriting (Browser Shield, Core Script)

Both these tools Browser Shield and Core Script also require

policy specifications, and hence face the same challenges as

other policy based approaches where the policies are not

inferred. Also, since they parse HTML and JavaScript in the

page, the performance impact is significant. Also, while the

authors suggest specifying site-independent policies, it is

unclear how this can be achieved, as something valid for one

site may not be for another [10].

2.3.3 Dynamic Data Tainting

This approach addresses only one class of XSS attack; it does

not mitigate the damage of other XSS-based attacks [10].

So a new approach to detect and prevent XSS attack is

suggested in this paper.

3. Approach

In this section, the paper presents the new approach that

significantly protects the cookies, SQLIA and cross site

scripting attacks from the XSS attacks. The approach can be

implemented simply in the transformation engine without any

change required on both web browser and web server. The

paper proposes a new technique called “Cookie rewriting”

which is then implemented as a part of system. With this

technique in place, the transformation engine will rewrite the

cookie with the MD5 hashing scheme. After rewriting the

cookie value before sending the cookie to the browser, so the

browser will keep the randomized value on the browser

instead of the original value sent by the web server. The two

more algorithms to detect and prevent the SQL injection and

XSS attack which are data cleansing algorithm and XSS

detection algorithm are also suggested in this paper

3.1 Cookie Attack

Meaning of Cookies: Cookies are small files which are found

and stored on a client computer which are designed to hold

an unassuming or moderate amount of data, specific to a

particular client and website, and then can be accessed either

by the web server or the client computer.

A] Cookie Attack: The technology which enables the session

management over the HTTP protocol is called cookie.

Cookie is widely used for storing the session ID and personal

information handled in web applications. It is a small size of

data stored in a text file of the user‟s computer and

exchanged between the server and the client. There are six

parameters in the cookie called attribute:

 Name of the cookie

 Value of the cookie

 Deadline of the cookie

 Route of the server which the browser sends the cookie

 Region of the server where the browser sends the cookie

 The appeal for a secure connection between the browser

and the server

Cookie is given to a web browser from the server and is held

at the browser until it expires. There are two types of

cookies, a session cookie and a persistent cookie. The session

cookie is used temporarily and discarded when the browser

closes. The value of a session cookie is a random value and

renewed every time a new session starts. On the other hand, a

persistent cookie is stored in the browser for a definite period

of time. Once a persistent cookie is given to the browser, it

can be reused for any number of times, which improves the

performance of web services.

Figure 1: The Cookies Attack Prevention Technique

B] Prevention of Cookie Attack: The prevention of the

cookie attack is depicted. When the client sends a request to

server, this request is then send to the transformation filter at

server side. After this process the request sends to the

transformation Engine; it will digest cookies by using hash

function i.e. MD5 scheme and generates encrypted/hashed

cookies from plaintext cookies. After this, hashed cookies

will replace at browser side. Now, if attacker tries to steal

cookies those cookies will be useless. Hence, Cookie attack

is prevented using Cookie Rewriting Technique.

3.2 Sql Attack

SQL Injection is a code injection technique, used to attack

data-driven applications, in which malicious SQL statements

are inserted into an entry field for execution (e.g. to dump the

database contents to the attacker).

A] Sql Injection Attack: SQL injection attacks are a common

problem observed in web applications that are published on

the internet. SQL injection attacks are very impactful system

attacks that can be used to acquire or manipulate data in the

database or data-driven systems. Furthermore, these attacks

are simple to be learned and executed, due to this any person

or hacker without any knowledge of the sql injection can

perform attack. There are susceptibilities in which SQLIAs

attackers preferred to use in order to crack the systems data,

those susceptibilities are either Software or Hardware

elements such as (Servers, Web-Services, Operating Systems,

Applications, Database Engines, etc.). If these elements are

Paper ID: SUB151730 2139

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 2, February 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

not continuously updated with the latest patches and security

updates, then they will be more prone to be attacked, and

then they might not be able to reject such attacks.

In advanced SQLIAs attackers prefer to use the database core

tables that contain confidential information about the whole

database system. Hence, once users are connected to

database to get answers for their queries, the system submits

these feedbacks as SQL queries to the database management

system (DBMS) in the database server. After that, the

database server returns the related information (feedback) to

the system. Finally, the system delivers the resulted data as

visual information to the requester that is the user. The

attacker can destruct the flow of data between the user, the

system, and the database to gain or manage the data by

sending queries loaded (injected) by malicious scripts, inline

SQL queries, or commands that will be executed by the

database engine and applied to the system database. The

insertion of the SQL injection attacks could be categorized

as; Determining database information, Data Gathering,

Database Manipulation, Code Injection, Function Call

Injection, or Buffer Overflows.

B] Prevention of Sql Injection Attack: In the figure 2, SQL

Injection Attack (SQLIA) Prevention is depicted. If the client

is an attacker, then he/she enters a SQL query to gain access

of user‟s confidential data. In our proposed system, the

client‟s request is sent to Data Cleansing Filter at server side.

Data Cleansing Filter intercepts every request and send to

Reverse Proxy Server to check whether attack is performed

or not. The SQL Injection Detector matches the each token

with SQL keywords and other SQL Query patterns in the

database. Once the pattern matching is done a negative

response about the attack is delivered to the server and then

further server will send the same response to the client i.e.

error message or malicious activity is trace. In case if the

client is a user and attack is not performed then a positive

response is sent to the third party. After processing the

specified request, the response is sent to the client.

Figure 2: Sql and XSS Prevention and Detection Technique

3.3 Cross Site Scripting Attack

Cross-Site Scripting (XSS) attacks are a type of injection, in

which malicious scripts are injected into otherwise benign

and trusted web sites. XSS attacks occur when an attacker

uses a web application to send malicious code, generally in

the form of a browser side script, to a different end user.

A] XSS Attack: Cross Site Scripting (XSS), is the most

widespread and harmful web application security issue. It

was first noticed, when CERT (Computer Emergency

Response Team) published an advisory on newly identified

security vulnerability affecting all web applications. This flaw

occur whenever a web application takes data that originated

from a user and sends it to a web browser without first

validating or encoding that content. XSS is used to allow

attackers to execute script in the victim‟s browser, which can

hijack user sessions, deface web sites, insert hostile content,

and conduct phishing attacks. Any scripting language

supported by the victim‟s browser can also be a potential

target for this attack. Web based applications are accessed

using Web based communication protocols and use Web

browsers as graphical user interface. Many number of Web

applications make use of either basic HTTP or higher level

protocols based on HTTP such as SOAP.

Cross-Site Scripting attack continuously leads the most wide

spread web application vulnerabilities lists XSS are broadly

classified into two main attacks which are Persistent and

Non-Persistent Attacks. Persistent attack (also called as

stored attack) holes exist when an attacker post the malicious

code on the vulnerable web application‟s repository. As a

result, if the stored malicious code gets executed by the

victim‟s browser, then stored attack gets exploited on the

victim‟s web browser. Secondly non-persistent attack (also

called as reflected attack) means that the vulnerable

malicious code is not persistently stored on a web server but

it is immediately displayed by the vulnerable web application

back to the victim‟s web browser. If so, then the malicious

code gets executed on the victim‟s web browser and finally,

victim‟s browser has to compromise its resources (e.g.

cookies).

B] Prevention of XSS Attack: In the figure 2, Cross-Site

Scripting (XSS) Prevention is depicted. If the client is an

attacker, then he/she enters the malicious script to gain access

of user‟s confidential data. In our proposed system, the

client‟s request is sent to Data Cleansing Filter at server side.

Data Cleansing Filter intercepts every request. For every

request, it will creates XML file and send to Reverse Proxy

Server to check whether attack is performed or not. The

Cross-site Detector matches the each token with forbidden

tag and other XSS patterns in the database. At reverse proxy,

XML file also check against XSS attack, once the pattern

matching is done a negative response about the attack is

delivered to the server and then further server will send the

same response to the client i.e. error message or malicious

activity is trace. In case if the client is a user and attack is not

performed then a positive response is sent to the third party.

After processing the specified request, the response is sent to

the client.

3.4 URL Attack

Every request which sent by client is always redirect through

the URL. In proposed system, the cookie attack is prevented.

Paper ID: SUB151730 2140

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 2, February 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The SQLIA and XSS can be performed through the URL and

as explained those attacks will be prevented.

4. Evaluation

A new approach for the eradication of the attacks has

developed a Reverse Proxy Server, Transformation Engine

and implemented on the proposed system using JAVA (JDK

Version 1.6) programming language. The execution of

Reverse Proxy Server and Transformation Engine is

performed on windows 2007 onwards. The current version of

the code supports HTTP as well as it is platform

independent. The experiments to evaluate a compatibility of

the approach on four web browser have been conducted:

Internet explorer, Google Chrome, Opera or Mozilla Firefox.

We executed the server‟s code using Apache Tomcat V7.0.

We used backend database as MySQL SERVER 5. It has

been observed in the testing that the browsers stored and

returned the randomized values of cookies properly which

are rewritten by the Transformation Engine. Reverse Proxy

Server accepts the same request to detects and prevents the

attacks like SQLIA and XSS.

5. Discussion

To prevent web applications from various types of attack

previous studies were done to detect and prevent from one or

maximum two attacks. Challenge was to combinely detected

and prevented more than one attack in single application. The

proposed method prefers to detect and prevent frequently

performed attacks like XSS-Cross site scripting, Sql injection

attack and Cookie attack. Using transformation engine and

web proxy server the system tries to filter every request from

user of application to secure confidential data from attacker.

By dynamically changing cookie it will be saved in encrypted

form so that it will be very difficult to get back secure data of

user of system. Compatibility: The subjective is to secure the

transactions between the sender and receiver on any web

application which needs high security, by various prevention

techniques. It is a tool which will be helpful to maintain

statistical reports for future and a preventive measure for any

new web application. The information which will be sent or

received will be in encrypted form due to which pilferages

will be less. Performance: Security means protecting

information and information systems from unauthorized

access, use, disclosure, disruption, modification or

destruction, in web application. The terms information

security, computer security and information assurance are

frequently incorrectly used interchangeably. These fields are

interrelated often and share the common goals of protecting

the confidentiality, integrity and availability of information;

however, there are some subtle differences between them.

The uptime of the application should be 100% so that at any

given point of time the application should be performing in a

good condition to secure the data.

6. Conclusion

The proposed system introduces different types of attacks

such as SQL Injection attack, cookie attack, URL attack and

XSS attack and their prevention techniques. This system has

proved to be highly secured that at any time when we access

any kind of accounts through web applications; it always

secure the confidential data from the attacker(s). It is

concluded that the system can be used as an intermediation

between any application and related database. Can also be

used for data analysis in future. The system assures the

accuracy and it is highly flexible that can be upgraded as per

the requirements in future.

7. Acknowledgment

We are sincerely thankful to Prof. S. R. Javheri for support

and guidance and I also like to thank the management of

P.V.P.I.T College of Engineering for their support to carry

out this work efficiently.

References

[1] Pratheep Bunyatnoparat, Rattipong Putthacharoen,

“Protecting Cookies From Cross Site Script Attacks

Using Dynamic Cookies Rewriting Technique”, IEEE,

ISBN 978-89-5519-155-4, Feb. 13~16, 2011

ICACT2011.

[2] Ajay Kaurav, K.A.Varunkumar, K.A.Varunkumar,

M.Prabakaran, S.Sibi Chakkaravarthy, S. Thiyagarajan,

Pokala Venkatesh, “Various Database Attacks and its

Prevention Techniques”, International Journal of

Engineering Trends and Technology (IJETT), Volume 9

Number 11 - Mar 2014.

[3] D. Srikanth, G. Kumar, Mohd Taqiuddin Ahmed,

“Resisting Web Application Based XSS Attacks

Through Cross-Site Scripting”, Nov 2013.

[4] Amer Jibril Qaralleh & Jalal Omer Atoum “A Hybrid

Technique for Sql Injection Attacks Detection and

Prevention”, International Journal of Database

Management Systems (IJDMS), Vol.6, No.1, February

2014.

[5] Manish Kumar et al, “Detection and Prevention of SQL

Injection attack”, (IJCSIT) International Journal of

Computer Science and Information Technologies, Vol. 5

(1) , 2014.

[6] Dr. Manju Kaushik et.al, “SQL Injection Attack

Detection and Prevention Methods: A Critical Review”,

International Journal of Engineering Trends and

Technology (IJETT), Vol. 3, Issue 4, April 2014.

[7] Laxman Singh et.al. “Detection and Prevention of SQL

injection Attacks on Database using Web Services”,

International Journal of Emerging Technology and

Advanced Engineering, Volume 4, Issue 4, April 2014.

[8] Sandra Sarasan, “Detection and Prevention of Web

Application Security Attacks”, Department of Computer

Science & Engineering, University of Calicut, Calicut,

India, Volume No.: 2, Issue-3, 2013.

[9] Dr. R.P Mahapatra, Ruchika Saini, Neha Saini, “A

Pattern Based Approach to Secure Web Applications

from XSS Attacks”, International Journal of Computer

Technology and Electronics Engineering (IJCTEE)

Volume 2, Issue 3, June 2012

[10] Preeti Raman, “JaSPIn: JavaScript based Anomaly

Detection of Cross-site scripting attacks”.

Paper ID: SUB151730 2141

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 2, February 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[11] A. Duraisamy, M.Sathiyamoorthy, S.Chandrasekar, “A

Server Side Solution for Protection of Web Applications

from Cross-Site Scripting Attacks”, International Journal

of Innovative Technology and Exploring Engineering

(IJITEE), Volume-2, Issue-4, March 2013.

[12] D. Srikanth, G. Kumar, Mohd Taqiuddin Ahmed,

“Resisting Web Application Based XSS Attacks

Through Cross-Site Scripting”, Nov 2013.

[13] Nikita Patel et.al., “An Approach of Preventing Code

Injection Attack in Web Environment”, International

Journal of Advanced Research in Computer and

Communication Engineering, Vol. 1, Issue 5, July 2012.

[14] Shashank Gupta et.al, “Prevention of Cross-Site

Scripting Vulnerabilities using Dynamic Hash

Generation Technique on the Server Side”, International

Journal of Advanced Computer Research, Volume-2

Number-3 Issue-5 September-2012.

[15] Hiroya Takahashi et.al, “Preventing Abuse of Cookies

Stolen by XSS”.

[16] “Web Based Attacks”, White Paper, February 2009.

[17] Adam Kieyzun et.al, “Automatic Creation of SQL

Injection and Cross-Site Scripting Attacks”, Computer

Science and Artificial Intelligence Laboratory Technical

Report, September 10, 2008.

[18] Florian Kerschbaum, “Simple Cross-Site Attack

Prevention”.

Paper ID: SUB151730 2142

