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Abstract: New Distributed Arithmetic (NEDA) technique is being used in many digital signal processing systems that require MAC 

(multiply and accumulate) units. FFT (Fast Fourier Transform) is a method for computing the DFT with reduced number of 

computations. Distributed arithmetic technique is used to implement the sum of product terms and this technique uses ROM, Adder and 

Shifter for the purpose of implementation, but in NEDA technique only Adder and Shifter is used. So, the size of the architecture is 

reduced with respect to Distributed arithmetic technique, and thus the speed and throughput of the architecture is enhanced. The 

advantages of this method are reduced hardware and improved latency. The advantage of using Radix-4 algorithm is that it retains the 

simplicity of Radix-2 algorithm and gives the output with lesser complexity. Design of FFT using NEDA improves performance of the 

system in terms of speed, power and area. The VHDL language is used for coding, synthesis can be done by means of Xilinx-ISE and 

Model-Sim can be used for simulation. 
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1. Introduction 
 

Today’s electronic systems mostly run on batteries thus 

making the designs to be hardware efficient and power 

efficient. Application areas such as digital signal processing, 

communications, etc. employ digital systems which carryout 

complex functionalities. Hardware efficient and power 

efficient architectures for these systems are most required to 

achieve maximum performance.   

 

The Fourier transform is the one of the several mathematical 

tools for analyzing the signals. It involves the decomposition 

of the signals in the frequency-domain in terms of sinusoidal 

or co sinusoidal components. The mathematical definition of 

a continuous Fourier Transform is given in the following. 

                (1) 

Where x(t) is the original signal, X(  ) is the representation 

of signal in the frequency-domain, j is the imaginary number, 

ω is the angular frequency and t is the time index.  

 

Fourier transform is developed to represent the continuous 

signals in frequency domain. But, it is necessary to analyze 

the discrete signals. Because, all real time processors are 

made to be dealt with the digital signals alone. For analyzing 

the discrete signals, the Discrete Time Fourier Transform is 

used. The transformed value should be discrete. Since, the 

digital signal processors cannot work with the continuous 

frequency signals. DFT is developed to represent the discrete 

signal in discrete frequency domain. 

 

DFT is also considered as one of the major tools to perform 

frequency analysis of discrete time signals. A discrete time 

sequence can be represented by samples of its spectrum  in 

the frequency domain, using DFT. The mathematical 

representation of the transform is shown below. 

     n=0,1..... N-1           (2)  

Many efficient ways have been put up for direct 

implementation of DFT due to its computational complexity. 

FFT is one of the most efficient and common ways to 

implement DFT.  Reduced computational complexity and 

low latency are two driving factors for implementing DFT 

using FFT. The forward and inverse equations of an N point 

FFT are given below 

                                (3) 

                           (4) 

As seen from equations (3) and (4), the basis of both forward 

and inverse equations remain same thus increasing the scope 

of the architecture to both forward and backward. Due to 

increased employability of FFT in modern electronic 

systems, higher radix FFTs such as radix – 4, radix – 8, radix 

– 2
k
, split radix, etc. are designed for improved timing and 

reduced hardware. The basic difference of the mentioned 

methods lies in the structure of their butterfly units. 

 

2. Theory  
 

Many works has been carried out in the field of transforms 

like DFT and FFT, etc. DA [6] has become one of the most 

efficient tools in VLSI implementation of digital signal 

processing architectures. It efficiently computes inner 

products of vectors, which is a key requirement in many DSP 

systems. One of the key computational blocks in DSP is 

MAC, which is implemented by a standard adder unit and a 

multiplier. Using DA, MAC unit can be implemented by pre 

computing all possible products and using a ROM to store 

them. By using DA is in its exponential increase of the size 

of ROM with increase in internal precision and number of 

inputs. An approach to overcome this drawback is by 

distributing the coefficients to inputs. One of such examples 

is NEDA. As in [5], it can be used to implement any 

transform that is based on Fourier basis. This approach helps 
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in finding out the redundancy in computing vector inner 

product thus reducing the number of computational blocks, 

especially adder. 

 

Many architecture models for DFT, based on DA, are 

implemented in [4]. The disadvantage of this implementation 

is that they use ROM or RAM which makes the designs with 

increased architecture. Other approach in implementing DFT 

is based on employing CORDIC units [2][3]. Even this has 

the structure of a CORDIC unit is comparable to that of a 

multiplier thus making it more hardware complex. 

 

The approach is based on NEDA, which does not require 

any ROM thus making to have reduced hardware core. The 

distribution of the coefficients is done optimally to further 

reduce the redundant hardware units. 

 

3. Methodology 
 

New Distributed Arithmetic (NEDA) is being used in many 

digital signal processing systems that possess MAC units as 

their computational blocks. Transforms such as FFT, DCT, 

etc. have many MAC like structures that it requires much 

hardware. Design of such transforms using multiplier-less 

and ROM-less architectures using blocks like NEDA can 

improve the performance of the system in terms of power, 

area and speed. 

 

3.1 System Overview 

 

The basic block diagram for the 16 point FFT using NEDA 

is shown in the Figure 1.The design of 16-point FFT using 

radix-4 method has been designed. Complex multiplications 

required during the process have been designed by using 

NEDA. According to the radix-4 algorithm, to design 16-

point FFT, eight radix-4 butterflies are required. Four radix-

4 butterflies are used in the first stage and the other four 

being used in the second/final stage. The output of each 

radix-4 butterfly is multiplied by the respective twiddle 

factors. In the shown block diagram, the first stage consists 

of four radix-4 butterflies. The inputs to the butterflies are 

x(n), x(n+4), x(n+8), x(n+12) where n is 0 for first 

butterfly,1 for second butterfly, 2 for the third butterfly, and 

3 for the last butterfly, all of first stage. 

 

The twiddle factors are given by W
0

16,W
q

16,W
2q

16, W
3q

16 

where q is 0 for first butterfly,1 for second butterfly, 2 for 

third butterfly, and 3 for the last butterfly. The outputs of 

first stage are multiplied with respective twiddle factors and 

are given as inputs to the second stage. As the work, the 

complex twiddle multiplications required at the stage-1 

output have been fed into NEDA blocks. Overall 9 NEDA 

blocks are required at the output of first stage of the 16 point 

FFT processor. 

 

 
Figure 1: Block Diagram of 16-Point Radix-4 FFT using 

NEDA 

In the second stage, 4 more radix-4 butterfly blocks are used. 

The first radix-4 butterfly in the second stage takes the first 

output of the 4 radix-4 butterfly blocks used in the first stage. 

The second radix-4 butterfly in the second stage takes the 

second output of the 4 radix-4 butterfly blocks followed by 

the NEDA block (if required). This process continues for the 

rest radix-4 butterfly blocks present in the second stage. 

There is no need of using any NEDA block after second 

stage as the twiddle factor W
0
16 that is 1 is multiplied to the 

outputs of the second stage. The advantage of using radix-4 

algorithm is that it retains the simplicity of radix-2 algorithm 

and gives the output with lesser complexity. The NEDA 

block shown in the block diagram does the complex 

multiplication of the output of the first stage and the 

respective twiddle factor. The twiddle factor values used 

here are as follows, 

W
1
16  = cos  – jsin      =  0.9238-j0.3826 

W
2
16  = cos  – jsin      =  0.7071-j0.7071 

W
3
16  = cos  – jsin   =  0.3826-j0.9238 

W
4
16  = cos  – jsin   =  0-j 

W
6
16  = cos  – jsin   = - 0.7071-j0.7071 

W
9
16  = cos  – jsin   = - 0.9238+j0.3826            (5) 

The product of a complex number and a twiddle factor is 

given by (R+jI)(cos θ + jsin θ) = (Rcos θ – Isin θ)+j(Rsin  

θ+Icos θ). For a constant θ, cosine and sine values are 

constant. 

 

3.2 Radix-4 Butterfly Structure  

 

In Radix-4 butterfly structure, N has been assumed a power 

of 4, i.e.N = 4
L
. When N = 16 = 4

2
, the given sequence x(n) 

is decimated into four sequences of length . Radix-4 FFT 

algorithm is developed for evaluating the DFT for N = 16. 

The symmetry and periodicity of W
r
N can be exploited to 

obtain further reductions in computation. The multiplications 

by W
0
N= 1, = -1,  = j, = -j can be avoided in the 

DFT computation process in order to save the computational 
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complexity. The basic structure of Radix-4 butterfly is 

shown in figure 2. 

 

 
Figure 2: Basic Structure of Radix-4 Butterfly Block 

 

3.3 NEDA Architecture 

 

NEw Distributed Arithmetic (NEDA) is being used in many 

digital signal processing systems that possess MAC unit as 

the computational blocks. Transforms such as DWT, DCT, 

etc have many MAC like structures that in turn require much 

hardware. Design of such transform using multiplier-less and 

ROM-less architectures using blocks like NEDA improves 

performance of the system in terms of power, area and 

speed. 

 
Figure 3: NEDA Architecture. 

 

In figure 3, binary output of the radix-4 butterfly block is 

given as input to the NEDA block. In NEDA block, only 

addition and shifting operation is done. Input is shifted by 

corresponding bit position of ones in the twiddle factor. If 

the bit position of twiddle factor is 2
k
, then the direction of 

shifting is determined by the sign of k, where k represents 

the bit position. After the shifting operation addition takes 

place. 

 If the input is a complex number, then the real value of input 

has shifting and addition operation with corresponding real 

and imaginary value of twiddle factor. The imaginary part of 

input has shifting and addition operation with corresponding 

real and imaginary value of twiddle factor. And combining 

the shift and addition of real and imaginary part the output is 

obtained. 

In figure 1, twiddle factors are combined with the output of 

radix-4 butterfly block of first stage and the output of NEDA 

bock is again fed as input to the radix-4 butterfly block of 

second stage and corresponding output is obtained. 

 

4. Results and Discussion 
 

The Blocks are modeled using VHDL in Xilinx ISE Design 

Suite 13.2 and the simulation of the design is performed 

using ModelSim SE 6.3f to verify the functionality of the 

design. Here a structural model of proposed system is been 

developed. The Architecture contains modules such as 

Radix-4 Butterfly Block and NEDA Block.  

 

4.1 Simulation of Radix-4 Butterfly Block 

 

The butterfly of a radix-4 algorithm consists of four inputs 

and four outputs. The input signals are s0,s1,s2,s3 and output 

signals are g0,g1,g2,g3. Simulation result of Radix-4 

butterfly block is shown in figure 4. 

 

 
Figure 4: Simulation result of Radix-4 butterfly block 

 

4.2 Simulation of NEDA Block 

 

In NEDA block, each state corresponds to the values of the 

twiddle factor. But instead of multiplying the input with the 

corresponding value of the twiddle factor binary addition 

and shifting operation takes place. Simulation result of 

NEDA architecture is shown in figure 5. 

 

 
Figure 5: Simulation result of NEDA Architecture. 

 

4.3 Simulation of 16-point Radix 4 FFT 

 

The output from the Radix-4 butterfly block is obtained by 

binary addition of the four states. The first four output value 

from the Radix-4 butterfly block is given directly to second 

stage Radix-4 butterfly block since the twiddle factor is one. 

Meanwhile the other output values from the Radix-4 

butterfly block is given to the NEDA block where addition 

and shifting operation between these output values and 

twiddle factor take place. These outputs from the NEDA 

block is given to the second stage Radix-4 butterfly block 

from which FFT values for the given DFT value is obtained. 

Simulation result of 16-Point Radix-4 FFT using NEDA is 

shown in figure 6. 
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Figure 6: Simulation result of 16-Point Radix-4 FFT using 

NEDA 

 

4.4 Synthesis Report 

 

From the synthesis report of 16 point Radix-4 FFT, the 

architecture uses no multiplier and ROM thus making the 

system more reliable with minimum hardware utilization. 

 

 
Figure 7: Synthesis report of 16-point Radix-4 FFT using 

NEDA 

 

5. Conclusion 
 

Radix-4 complex 16 point FFT core using NEDA is 

designed. It is ROM less and multiplier less method. This 

design is efficient in terms of hardware and power 

consumption. Fast Fourier transform (FFT) is an efficient 

algorithm to compute the discrete Fourier transform and its 

inverse. The proposed design is simulated by using 

ModelSim and synthesized by Xilinx ISE. The synthesis 

results show that the computation for calculating the 16 point 

FFT is efficient in terms of area and power. Due to the 

extensive use of multipliers, memory or ROMs, there is a 

substantial increase in the power consumption and area for 

FFT cores. The use of FFT core reduces the number of 

computations in calculating a transform, thereby increasing 

speed and throughput. The present architecture of 16-point 

radix-4 complex FFT core using NEDA uses no multiplier 

and ROM thus making the system more reliable with 

minimum hardware utilization. The area and power can be 

further reduced by changing the adder structure in NEDA 

Block. Thus an efficient 16-point Radix-4 FFT can be 

designed by modifying the adder circuit in the architecture. 

 

References 
 

[1] Abhishek Mankar, Ansuman Diptisankar Das and N 

Prasad, “FPGA Implementation of 16-Point Radix-4 

Complex FFT Core Using NEDA,”IEEE trans on 

Computing, Dec 2013  

[2] Pooja Choudhary, and Dr. Abhijit Karmakar, “CORDIC 

Based Implementation of Fast Fourier Transform,” 

Proc. Intl. Conf.Computer and Comm. Tech., Sept. 

2011. 

[3] Jayshankar, “Efficient Computation of the DFT of a 2N 

–Point Real Sequence using FFT with CORDIC based 

Butterflies,” Proc. IEEE TENCON 2008,Nov. 2008 

[4] M. Rawski, M. Vojtynski, T. Wojciechowski, and 

P.Majkowski, “Distributed Arithmetic Based 

Implementation of Fourier Transform Targeted at FPGA 

Architectures,”Proc. Intl. Conf. Mixed Design,, Jun. 

2007. Wendi Pan, Ahmed Shams, and Magdy A. 

Bayoumi,“NEDA: A NEw Distributed Arithmetic 

Architecture and its Application to One Dimensional 

Discrete Cosine Transform,” Proc. IEEE Workshop on 

Signal Processing Syst., Oct. 1999. 

[5] Stanley A. White, “Applications of Distributed 

Arithmetic to Digital Signal Processing: A Tutorial 

Review,” IEEE ASSP Magazine, vol. 6, no. 3, Jul.1989. 

Paper ID: SUB151618 2198




