
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 2, February 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

FFT with Minimum Hardware Utilization and

Latency Using NEDA

Deepaa S S
1
, Sheela Devi Aswathy Chandran

2

1P G Scholar, VLSI and Embedded Systems, Department of ECE, T K M Institute of Technology, Kollam, India

2Assistant Professor, Department of ECE, T K M Institute of Technology, Kollam, India

Abstract: New Distributed Arithmetic (NEDA) technique is being used in many digital signal processing systems that require MAC

(multiply and accumulate) units. FFT (Fast Fourier Transform) is a method for computing the DFT with reduced number of

computations. Distributed arithmetic technique is used to implement the sum of product terms and this technique uses ROM, Adder and

Shifter for the purpose of implementation, but in NEDA technique only Adder and Shifter is used. So, the size of the architecture is

reduced with respect to Distributed arithmetic technique, and thus the speed and throughput of the architecture is enhanced. The

advantages of this method are reduced hardware and improved latency. The advantage of using Radix-4 algorithm is that it retains the

simplicity of Radix-2 algorithm and gives the output with lesser complexity. Design of FFT using NEDA improves performance of the

system in terms of speed, power and area. The VHDL language is used for coding, synthesis can be done by means of Xilinx-ISE and

Model-Sim can be used for simulation.

Keywords: COrdinate Rotation DIgital Computer (CORDIC), Distributed Arithmetic (DA), Discrete Fourier Transform (DFT), Fast

Fourier Transform (FFT), Multiply and Accumulate Unit (MAC), New Distributed Arithmetic (NEDA), Radix-4.

1. Introduction

Today’s electronic systems mostly run on batteries thus

making the designs to be hardware efficient and power

efficient. Application areas such as digital signal processing,

communications, etc. employ digital systems which carryout

complex functionalities. Hardware efficient and power

efficient architectures for these systems are most required to

achieve maximum performance.

The Fourier transform is the one of the several mathematical

tools for analyzing the signals. It involves the decomposition

of the signals in the frequency-domain in terms of sinusoidal

or co sinusoidal components. The mathematical definition of

a continuous Fourier Transform is given in the following.

 (1)

Where x(t) is the original signal, X() is the representation

of signal in the frequency-domain, j is the imaginary number,

ω is the angular frequency and t is the time index.

Fourier transform is developed to represent the continuous

signals in frequency domain. But, it is necessary to analyze

the discrete signals. Because, all real time processors are

made to be dealt with the digital signals alone. For analyzing

the discrete signals, the Discrete Time Fourier Transform is

used. The transformed value should be discrete. Since, the

digital signal processors cannot work with the continuous

frequency signals. DFT is developed to represent the discrete

signal in discrete frequency domain.

DFT is also considered as one of the major tools to perform

frequency analysis of discrete time signals. A discrete time

sequence can be represented by samples of its spectrum in

the frequency domain, using DFT. The mathematical

representation of the transform is shown below.

 n=0,1..... N-1 (2)

Many efficient ways have been put up for direct

implementation of DFT due to its computational complexity.

FFT is one of the most efficient and common ways to

implement DFT. Reduced computational complexity and

low latency are two driving factors for implementing DFT

using FFT. The forward and inverse equations of an N point

FFT are given below

 (3)

 (4)

As seen from equations (3) and (4), the basis of both forward

and inverse equations remain same thus increasing the scope

of the architecture to both forward and backward. Due to

increased employability of FFT in modern electronic

systems, higher radix FFTs such as radix – 4, radix – 8, radix

– 2
k
, split radix, etc. are designed for improved timing and

reduced hardware. The basic difference of the mentioned

methods lies in the structure of their butterfly units.

2. Theory

Many works has been carried out in the field of transforms

like DFT and FFT, etc. DA [6] has become one of the most

efficient tools in VLSI implementation of digital signal

processing architectures. It efficiently computes inner

products of vectors, which is a key requirement in many DSP

systems. One of the key computational blocks in DSP is

MAC, which is implemented by a standard adder unit and a

multiplier. Using DA, MAC unit can be implemented by pre

computing all possible products and using a ROM to store

them. By using DA is in its exponential increase of the size

of ROM with increase in internal precision and number of

inputs. An approach to overcome this drawback is by

distributing the coefficients to inputs. One of such examples

is NEDA. As in [5], it can be used to implement any

transform that is based on Fourier basis. This approach helps

Paper ID: SUB151618 2195

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 2, February 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

in finding out the redundancy in computing vector inner

product thus reducing the number of computational blocks,

especially adder.

Many architecture models for DFT, based on DA, are

implemented in [4]. The disadvantage of this implementation

is that they use ROM or RAM which makes the designs with

increased architecture. Other approach in implementing DFT

is based on employing CORDIC units [2][3]. Even this has

the structure of a CORDIC unit is comparable to that of a

multiplier thus making it more hardware complex.

The approach is based on NEDA, which does not require

any ROM thus making to have reduced hardware core. The

distribution of the coefficients is done optimally to further

reduce the redundant hardware units.

3. Methodology

New Distributed Arithmetic (NEDA) is being used in many

digital signal processing systems that possess MAC units as

their computational blocks. Transforms such as FFT, DCT,

etc. have many MAC like structures that it requires much

hardware. Design of such transforms using multiplier-less

and ROM-less architectures using blocks like NEDA can

improve the performance of the system in terms of power,

area and speed.

3.1 System Overview

The basic block diagram for the 16 point FFT using NEDA

is shown in the Figure 1.The design of 16-point FFT using

radix-4 method has been designed. Complex multiplications

required during the process have been designed by using

NEDA. According to the radix-4 algorithm, to design 16-

point FFT, eight radix-4 butterflies are required. Four radix-

4 butterflies are used in the first stage and the other four

being used in the second/final stage. The output of each

radix-4 butterfly is multiplied by the respective twiddle

factors. In the shown block diagram, the first stage consists

of four radix-4 butterflies. The inputs to the butterflies are

x(n), x(n+4), x(n+8), x(n+12) where n is 0 for first

butterfly,1 for second butterfly, 2 for the third butterfly, and

3 for the last butterfly, all of first stage.

The twiddle factors are given by W
0

16,W
q

16,W
2q

16, W
3q

16

where q is 0 for first butterfly,1 for second butterfly, 2 for

third butterfly, and 3 for the last butterfly. The outputs of

first stage are multiplied with respective twiddle factors and

are given as inputs to the second stage. As the work, the

complex twiddle multiplications required at the stage-1

output have been fed into NEDA blocks. Overall 9 NEDA

blocks are required at the output of first stage of the 16 point

FFT processor.

Figure 1: Block Diagram of 16-Point Radix-4 FFT using

NEDA

In the second stage, 4 more radix-4 butterfly blocks are used.

The first radix-4 butterfly in the second stage takes the first

output of the 4 radix-4 butterfly blocks used in the first stage.

The second radix-4 butterfly in the second stage takes the

second output of the 4 radix-4 butterfly blocks followed by

the NEDA block (if required). This process continues for the

rest radix-4 butterfly blocks present in the second stage.

There is no need of using any NEDA block after second

stage as the twiddle factor W
0
16 that is 1 is multiplied to the

outputs of the second stage. The advantage of using radix-4

algorithm is that it retains the simplicity of radix-2 algorithm

and gives the output with lesser complexity. The NEDA

block shown in the block diagram does the complex

multiplication of the output of the first stage and the

respective twiddle factor. The twiddle factor values used

here are as follows,

W
1
16 = cos – jsin = 0.9238-j0.3826

W
2
16 = cos – jsin = 0.7071-j0.7071

W
3
16 = cos – jsin = 0.3826-j0.9238

W
4
16 = cos – jsin = 0-j

W
6
16 = cos – jsin = - 0.7071-j0.7071

W
9
16 = cos – jsin = - 0.9238+j0.3826 (5)

The product of a complex number and a twiddle factor is

given by (R+jI)(cos θ + jsin θ) = (Rcos θ – Isin θ)+j(Rsin

θ+Icos θ). For a constant θ, cosine and sine values are

constant.

3.2 Radix-4 Butterfly Structure

In Radix-4 butterfly structure, N has been assumed a power

of 4, i.e.N = 4
L
. When N = 16 = 4

2
, the given sequence x(n)

is decimated into four sequences of length . Radix-4 FFT

algorithm is developed for evaluating the DFT for N = 16.

The symmetry and periodicity of W
r
N can be exploited to

obtain further reductions in computation. The multiplications

by W
0
N= 1, = -1, = j, = -j can be avoided in the

DFT computation process in order to save the computational

Paper ID: SUB151618 2196

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 2, February 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

complexity. The basic structure of Radix-4 butterfly is

shown in figure 2.

Figure 2: Basic Structure of Radix-4 Butterfly Block

3.3 NEDA Architecture

NEw Distributed Arithmetic (NEDA) is being used in many

digital signal processing systems that possess MAC unit as

the computational blocks. Transforms such as DWT, DCT,

etc have many MAC like structures that in turn require much

hardware. Design of such transform using multiplier-less and

ROM-less architectures using blocks like NEDA improves

performance of the system in terms of power, area and

speed.

Figure 3: NEDA Architecture.

In figure 3, binary output of the radix-4 butterfly block is

given as input to the NEDA block. In NEDA block, only

addition and shifting operation is done. Input is shifted by

corresponding bit position of ones in the twiddle factor. If

the bit position of twiddle factor is 2
k
, then the direction of

shifting is determined by the sign of k, where k represents

the bit position. After the shifting operation addition takes

place.

 If the input is a complex number, then the real value of input

has shifting and addition operation with corresponding real

and imaginary value of twiddle factor. The imaginary part of

input has shifting and addition operation with corresponding

real and imaginary value of twiddle factor. And combining

the shift and addition of real and imaginary part the output is

obtained.

In figure 1, twiddle factors are combined with the output of

radix-4 butterfly block of first stage and the output of NEDA

bock is again fed as input to the radix-4 butterfly block of

second stage and corresponding output is obtained.

4. Results and Discussion

The Blocks are modeled using VHDL in Xilinx ISE Design

Suite 13.2 and the simulation of the design is performed

using ModelSim SE 6.3f to verify the functionality of the

design. Here a structural model of proposed system is been

developed. The Architecture contains modules such as

Radix-4 Butterfly Block and NEDA Block.

4.1 Simulation of Radix-4 Butterfly Block

The butterfly of a radix-4 algorithm consists of four inputs

and four outputs. The input signals are s0,s1,s2,s3 and output

signals are g0,g1,g2,g3. Simulation result of Radix-4

butterfly block is shown in figure 4.

Figure 4: Simulation result of Radix-4 butterfly block

4.2 Simulation of NEDA Block

In NEDA block, each state corresponds to the values of the

twiddle factor. But instead of multiplying the input with the

corresponding value of the twiddle factor binary addition

and shifting operation takes place. Simulation result of

NEDA architecture is shown in figure 5.

Figure 5: Simulation result of NEDA Architecture.

4.3 Simulation of 16-point Radix 4 FFT

The output from the Radix-4 butterfly block is obtained by

binary addition of the four states. The first four output value

from the Radix-4 butterfly block is given directly to second

stage Radix-4 butterfly block since the twiddle factor is one.

Meanwhile the other output values from the Radix-4

butterfly block is given to the NEDA block where addition

and shifting operation between these output values and

twiddle factor take place. These outputs from the NEDA

block is given to the second stage Radix-4 butterfly block

from which FFT values for the given DFT value is obtained.

Simulation result of 16-Point Radix-4 FFT using NEDA is

shown in figure 6.

Paper ID: SUB151618 2197

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 2, February 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 6: Simulation result of 16-Point Radix-4 FFT using

NEDA

4.4 Synthesis Report

From the synthesis report of 16 point Radix-4 FFT, the

architecture uses no multiplier and ROM thus making the

system more reliable with minimum hardware utilization.

Figure 7: Synthesis report of 16-point Radix-4 FFT using

NEDA

5. Conclusion

Radix-4 complex 16 point FFT core using NEDA is

designed. It is ROM less and multiplier less method. This

design is efficient in terms of hardware and power

consumption. Fast Fourier transform (FFT) is an efficient

algorithm to compute the discrete Fourier transform and its

inverse. The proposed design is simulated by using

ModelSim and synthesized by Xilinx ISE. The synthesis

results show that the computation for calculating the 16 point

FFT is efficient in terms of area and power. Due to the

extensive use of multipliers, memory or ROMs, there is a

substantial increase in the power consumption and area for

FFT cores. The use of FFT core reduces the number of

computations in calculating a transform, thereby increasing

speed and throughput. The present architecture of 16-point

radix-4 complex FFT core using NEDA uses no multiplier

and ROM thus making the system more reliable with

minimum hardware utilization. The area and power can be

further reduced by changing the adder structure in NEDA

Block. Thus an efficient 16-point Radix-4 FFT can be

designed by modifying the adder circuit in the architecture.

References

[1] Abhishek Mankar, Ansuman Diptisankar Das and N

Prasad, “FPGA Implementation of 16-Point Radix-4

Complex FFT Core Using NEDA,”IEEE trans on

Computing, Dec 2013

[2] Pooja Choudhary, and Dr. Abhijit Karmakar, “CORDIC

Based Implementation of Fast Fourier Transform,”

Proc. Intl. Conf.Computer and Comm. Tech., Sept.

2011.

[3] Jayshankar, “Efficient Computation of the DFT of a 2N

–Point Real Sequence using FFT with CORDIC based

Butterflies,” Proc. IEEE TENCON 2008,Nov. 2008

[4] M. Rawski, M. Vojtynski, T. Wojciechowski, and

P.Majkowski, “Distributed Arithmetic Based

Implementation of Fourier Transform Targeted at FPGA

Architectures,”Proc. Intl. Conf. Mixed Design,, Jun.

2007. Wendi Pan, Ahmed Shams, and Magdy A.

Bayoumi,“NEDA: A NEw Distributed Arithmetic

Architecture and its Application to One Dimensional

Discrete Cosine Transform,” Proc. IEEE Workshop on

Signal Processing Syst., Oct. 1999.

[5] Stanley A. White, “Applications of Distributed

Arithmetic to Digital Signal Processing: A Tutorial

Review,” IEEE ASSP Magazine, vol. 6, no. 3, Jul.1989.

Paper ID: SUB151618 2198

