
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 2, February 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Improving Software Quality Using Two Stage Cost

Sensitive Learning

Ann Joshua

M. Tech Computer Science, Mount Zion College of Engineering, India

Abstract: The quality of software depends heavily on how accurately it works. The accuracy is determined by the fact that the less the

software modules are defect prone, the more accurate the software will be. So software defect prediction which classifies software

modules into defect prone and non-defect prone categories is an important area where a lot of research works are being done. Cost

sensitive learning that has been adopted in software defect prediction aims to minimize total expected cost. In this paper a two-stage cost

sensitive learning is proposed where the cost information is used in the feature selection stage and in the classification stage. Three cost

sensitive algorithms, Cost-Sensitive Variance Score, Cost-Sensitive Laplacian Score, and Cost-Sensitive Constraint Score are proposed.

The results of the proposed methods are analyzed with datasets from NASA.

Keywords: software defect prediction, two-stage cost sensitive learning, variance score, laplacian score, constraint score

1. Introduction

The competition in software industry is increasing day by

day. As technology advances, lots of industries are

developing high-end software with similar functionality. So

the major criterion for the customers to buy software is its

accuracy rather than the functionality it provides. A software

defect is an error or failure in a system that prevents the

software from generating the intended outcome. Predicting

the defects in an earlier stage of software development helps

in reducing the development time. Software defects incur

costs in terms of quality and time. The results of software

defect prediction provide a list of defect-prone and non

defect-prone modules. The larger the software, the more

relevant the defect prediction will be in the software industry.

The number of features to be extracted increases as the size

of the software increases and many of these features may be

redundant or irrelevant. The two challenges faced in software

defect prediction are high dimensionality and class imbalance

problem. High dimensionality results when classification

algorithms have to deal with superabundant features. Feature

selection which is an important preprocessing procedure is

capable of dealing with the high dimensionality problem. The

class imbalance problem occurs when the majority of defects

in a software system are found only in a small portion of the

modules. The two approaches drawn from machine learning

for addressing the class imbalance problem are stratification

and cost sensitive learning. Stratification is done by creating

a balanced data set through adding more samples to the

minority class or reducing the sample number of the majority

class. Cost sensitive learning takes the misclassification cost

along with other types of cost in data mining and aims to

minimize the total cost.

The goal of this paper is to develop a two-stage cost-sensitive

(TSCS) learning method for SDP by using cost information

in both the classification and the feature selection stages.

Three novel cost-sensitive feature selection algorithms has

been developed by emphasizing samples with higher

misclassification costs, and de-emphasizing those with lower

misclassification costs in the feature selection stage. The

experimental results on the public NASA Metrics Data

Program repository validate the efficacy of the proposed

methods.

2. Related Work

Cost sensitive learning has been studied in the data mining

community for addressing the class imbalance problem. The

cost information is used to evaluate misclassification cost

from different types of errors. Misclassification cost

corresponds to the cost occurred by misclassifying any

example of class i as class j. Standard learning algorithms are

designed to make classifiers cost sensitive. For this, the

training set given to the learning algorithm is rebalanced by

changing the proportion of positive and negative training

examples in the training set.

Metacost is a procedure that has been proposed to make

classifiers cost sensitive. In this, the underlying classifier is

treated as a black box requiring no knowledge of its

functioning. It estimates class probabilities by learning

multiple classifiers. It works by forming multiple bootstrap

replicates of the training set and learning a classifier on each,

estimating each class’s probability for each example.

Metacost produces large cost reductions compared to cost-

blind classifier. It is applicable to any number of classes and

can be effectively applied to large databases.

Cost sensitive boosting has been done on neural networks

that are used for software defect prediction. A neural network

consists of an input layer that receives external inputs; one or

more hidden layers and an output layer that gives the

classification results. When data are presented at the input

layer, the network nodes perform calculations in the

successive layers until an output value is obtained at each of

the output nodes. The output layer has a node to indicate

whether the software modules are defect-prone or not. Over

sampling is a method used to make a neural network

classifier cost sensitive in which the number of high cost

training examples are increased. Under sampling is another

method in which the number of inexpensive training

examples is decreased. AdaBoost is an effective method by

Paper ID: SUB151567 1726

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 2, February 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

which a composite classifier is constructed by sequentially

training individual base classifiers. During the training

process, the weights of training examples are adjusted in a

way that the weights of misclassified examples are increased

while the weights of correctly classified examples are

decreased in each training round. Finally, the constructed

individual classifiers are combined to form the composite

classifier by weighted or simple voting schemes.

3. Proposed Methods

The proposed method involves a two-stage cost sensitive

learning for software defect prediction in which the cost

information is used in both the feature selection stage and in

the classification stage. In cost sensitive feature selection, the

attributes that are associated with the defect prone modules

of the software are selected. The cost sensitive classification

makes sure that the classifier is not dominated by the not-

defect-prone module.

Fig. 1 illustrates the general architecture of the proposed

method. The historical data captured from software systems

are divided into the training set and the test set. The features

are selected using the variance score, laplacian score and

constraint score algorithms. The results will contain only

optimal features. Then resampling is done by which the

values of attributes that do not contribute for defect

prediction are reset. The next step is to build a decision tree

in which the selected attributes are given a rank. The ranking

is done in such a way that the most relevant attribute is given

the highest rank. Then the test data is loaded and the learned

model is evaluated on the test data set. The performance

evaluation is done by analyzing the data set on the three

algorithms. Different measures such as processing time,

sensitivity, accuracy and misclassification cost are calculated.

Figure 1: General architecture of the TSCS method

3.1 Preprocessing

The training and test data are preprocessed in order to

improve the quality of data. This includes removing

irrelevant attributes, inconsistent data and repeated rows. If

the value of an attribute results in both defect-prone and not-

defect prone modules, that particular attribute cannot be

taken for making a factor in defect prediction process. Such

attributes are removed in this stage. Thus after pre-

processing, the dataset will be a reduced one containing only

relevant attributes.

3.2 Feature Extraction

The features are extracted in a cost-sensitive way that

addresses the issue of classification in the presence of

varying costs associated with different types of

misclassification. Consider the class labels {1,….,c}. The

cost of misclassifying a sample from the ith class (i is in

{1,….,c-1}) as the cth class will be very high. The class

from 1
st
 class to c-1th class is the in-group class where as the

cth class is the out-group class. The cost of misclassifying a

sample from the out-group class as being from the in-group

class is known as the cost of false acceptance. The cost of

misclassifying a sample from the in-group class as being

from the out-group class is known as the cost of false

rejection. The cost of misclassifying a sample from the in-

group class as being from another in-group class is known as

the cost of false identification. Defect-prone modules are

considered as being from the out-group class and not-defect-

prone modules from the in-group class.

A cost matrix is constructed as shown in Table I, where the

element cost (i,j) indicates the cost of classifying a sample

from the ith class as the jth class. This mainly focuses on

calculating the cost of misclassification so that identifying it

at an earlier stage will reduce the total cost. The diagonal

elements in the cost matrix are zero because they will

represent a correct classification. The importance of each

class can be identified from the cost matrix. It is calculated

from the cost of false identification and false rejection for the

in-group class and from the cost of false acceptance for the

out-group class. It is necessary to know how far a class is

important, as it is one of the main factors used in the feature

selection algorithms..

Table 1: The cost matrix

3.2.1 Cost Sensitive Variance Score

Variance score is a simple unsupervised evaluation criterion

of features. It selects features that have the maximum

variance among all samples with the basic idea that variance

among a feature space reflects the representative power of

this feature. In this method, the mean of each attribute among

all the samples is calculated. Then the variance of each

feature from the mean value is calculated. The variance of a

good feature from the out-group class should be larger than

that of the in-group class. So the features with maximum

Paper ID: SUB151567 1727

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 2, February 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

variance score are considered to be important in the defect

prediction process and they are selected.

3.2.2 Cost Sensitive Laplacian Score

Laplacian score is an unsupervised feature selection method

which performs feature selection according to the constraint

preserving ability of features with stronger locality

preserving ability. The laplacian score of a feature is

calculated by considering the neighborhood relation between

two samples and the cost of misclassification of a sample

from one class as being from another class. The

misclassification cost can be obtained from the cost matrix.

The features having minimum laplacian score are selected.

3.2.3 Cost Sensitive Constraint Score

Constraint score is a semi-supervised feature selection

method which selects features with stronger locality

preserving ability. It uses must-link and cannot-link pair-wise

constraints as supervision information. Must-link pair-wise

constraints specify a pair of data samples that belong to the

same class and cannot-link pair-wise constraints specify a

pair of data samples that belong to different classes. The

constraint score is calculated by considering the importance

of the class for must-link constraints and the cost of

misclassification for cannot-link constraints. The features

having minimum constraint score are selected.

3.3 Defect Prediction

Once the relevant features are selected, they are re-sampled.

It involves resetting the values of attributes that do not

contribute for defect prediction to zero. Then a decision tree

is constructed by which each of the selected attribute is given

a rank. The attribute with highest rank will form the root of

the tree. Each attribute will be assigned the range of values it

falls within. The defect prediction is done by finding out

whether the attribute values are defect prone or not. The test

data is loaded and the learned model is evaluated on the test

data set.

4. Analysis

The classification results can be represented by the confusion

matrix with two rows and columns as shown in Table II. True

Positive (TP) refers to the number of defect-prone values that

are correctly classified. True Negative (TN) refers to the

number of not-defect-prone values that are correctly

classified. False Positive (FP) refers to the number of not-

defect-prone values that are classified as defect-prone. False

Negative refers to the number of defect-prone values that are

classified as not-defect-prone. Sensitivity measures the

proportion of defect-prone modules correctly classified.

Accuracy measures the proportion of samples correctly

classified among the whole population.

Table 2: Confusion matrix

The analysis also includes the comparison of the three feature

selection algorithms. The factors included for comparison are

the number of true positive, false positive, true negative, false

negative, sensitivity, accuracy, processing time and the

misclassification cost.

3.4 Conclusion

A two-stage cost-sensitive learning by utilizing cost

information in the feature selection stage and in the

classification stage has been proposed in this paper. The

datasets from NASA has been used for evaluating the

proposed method. It has been found that the cost-sensitive

learning performed better than cost-blind learning. The usage

of cost information in the feature selection stage resulted in

early defect prediction so that lesser time and effort are

required for maintenance of the software. Identifying the

misclassification cost at an earlier stage helps in reducing the

total cost of building the software.

References

[1] Mingxia Liu, Linsong Miao, and Daoqiang Zhang, “Two

–Stage Cost-Sensitive Learning for Software Defect
Prediction ,” IEEE transactions on reliability, Vol. 63,
No.2, June 2014

[2] C. Elkan, “The foundations of cost-sensitive learning,”
in Proc. 17

th
 Int. Joint Conf. Artif. Intell., Seattle, WA,

USA, 2001, pp. 973–978
[3] P. Domingos, “MetaCost: A general method for making

classifiers cost-sensitive,” in Proc. 5th ACM SIGKDD
Int. Conf. Knowledge Discovery and Data Mining, San
Diego, California, USA, 1999, pp.155–164.

[4] P. DomingosT. M. Khoshgoftaar, A. S. Pandya, and D.

L. Lanning, “Application of neural networks for

predicting defects,” Annal. Software Eng., vol. 1,pp.

141–154, 1995.

[5] D. Zhang, S. Chen, and Z. Zhou, “Constraint Score: A

new filter method for feature selection with pairwise

constraints,” Pattern Recogn., vol. 41, pp. 1440–1451,

2008.

Paper ID: SUB151567 1728

