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Abstract: The quality of software depends heavily on how accurately it works. The accuracy is determined by the fact that the less the 

software modules are defect prone, the more accurate the software will be. So software defect prediction which classifies software 

modules into defect prone and non-defect prone categories is an important area where a lot of research works are being done. Cost 

sensitive learning that has been adopted in software defect prediction aims to minimize total expected cost. In this paper a two-stage cost 

sensitive learning is proposed where the cost information is used in the feature selection stage and in the classification stage. Three cost 

sensitive algorithms, Cost-Sensitive Variance Score, Cost-Sensitive Laplacian Score, and Cost-Sensitive Constraint Score are proposed. 

The results of the proposed methods are analyzed with datasets from NASA. 

 

Keywords: software defect prediction, two-stage cost sensitive learning, variance score, laplacian score, constraint score 

 

1. Introduction 
 

The competition in software industry is increasing day by 

day. As technology advances, lots of industries are 

developing high-end software with similar functionality. So 

the major criterion for the customers to buy software is its 

accuracy rather than the functionality it provides. A software 

defect is an error or failure in a system that prevents the 

software from generating the intended outcome. Predicting 

the defects in an earlier stage of software development helps 

in reducing the development time. Software defects incur 

costs in terms of quality and time. The results of software 

defect prediction provide a list of defect-prone and non 

defect-prone modules. The larger the software, the more 

relevant the defect prediction will be in the software industry. 

 

The number of features to be extracted increases as the size 

of the software increases and many of these features may be 

redundant or irrelevant. The two challenges faced in software 

defect prediction are high dimensionality and class imbalance 

problem. High dimensionality results when classification 

algorithms have to deal with superabundant features. Feature 

selection which is an important preprocessing procedure is 

capable of dealing with the high dimensionality problem. The 

class imbalance problem occurs when the majority of defects 

in a software system are found only in a small portion of the 

modules. The two approaches drawn from machine learning 

for addressing the class imbalance problem are stratification 

and cost sensitive learning. Stratification is done by creating 

a balanced data set through adding more samples to the 

minority class or reducing the sample number of the majority 

class. Cost sensitive learning takes the misclassification cost 

along with other types of cost in data mining and aims to 

minimize the total cost. 

 

The goal of this paper is to develop a two-stage cost-sensitive 

(TSCS) learning method for SDP by using cost information 

in both the classification and the feature selection stages. 

Three novel cost-sensitive feature selection algorithms has 

been developed by emphasizing samples with higher 

misclassification costs, and de-emphasizing those with lower 

misclassification costs in the feature selection stage. The 

experimental results on the public NASA Metrics Data 

Program repository validate the efficacy of the proposed 

methods. 

 

2. Related Work 
 

Cost sensitive learning has been studied in the data mining 

community for addressing the class imbalance problem. The 

cost information is used to evaluate misclassification cost 

from different types of errors. Misclassification cost 

corresponds to the cost occurred by misclassifying any 

example of class i as class j. Standard learning algorithms are 

designed to make classifiers cost sensitive. For this, the 

training set given to the learning algorithm is rebalanced by 

changing the proportion of positive and negative training 

examples in the training set.  

 

Metacost is a procedure that has been proposed to make 

classifiers cost sensitive. In this, the underlying classifier is 

treated as a black box requiring no knowledge of its 

functioning. It estimates class probabilities by learning 

multiple classifiers. It works by forming multiple bootstrap 

replicates of the training set and learning a classifier on each, 

estimating each class’s probability for each example. 

Metacost produces large cost reductions compared to cost-

blind classifier. It is applicable to any number of classes and 

can be effectively applied to large databases. 

 

Cost sensitive boosting has been done on neural networks 

that are used for software defect prediction. A neural network 

consists of an input layer that receives external inputs; one or 

more hidden layers and an output layer that gives the 

classification results. When data are presented at the input 

layer, the network nodes perform calculations in the 

successive layers until an output value is obtained at each of 

the output nodes. The output layer has a node to indicate 

whether the software modules are defect-prone or not. Over 

sampling is a method used to make a neural network 

classifier cost sensitive in which the number of high cost 

training examples are increased. Under sampling is another 

method in which the number of inexpensive training 

examples is decreased. AdaBoost is an effective method by 
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which a composite classifier is constructed by sequentially 

training individual base classifiers. During the training 

process, the weights of training examples are adjusted in a 

way that the weights of misclassified examples are increased 

while the weights of correctly classified examples are 

decreased in each training round. Finally, the constructed 

individual classifiers are combined to form the composite 

classifier by weighted or simple voting schemes. 

 

3. Proposed Methods 
 

The proposed method involves a two-stage cost sensitive 

learning for software defect prediction in which the cost 

information is used in both the feature selection stage and in 

the classification stage. In cost sensitive feature selection, the 

attributes that are associated with the defect prone modules 

of the software are selected. The cost sensitive classification 

makes sure that the classifier is not dominated by the not-

defect-prone module.  

 

Fig. 1 illustrates the general architecture of the proposed 

method. The historical data captured from software systems 

are divided into the training set and the test set. The features 

are selected using the variance score, laplacian score and 

constraint score algorithms. The results will contain only 

optimal features. Then resampling is done by which the 

values of attributes that do not contribute for defect 

prediction are reset. The next step is to build a decision tree 

in which the selected attributes are given a rank. The ranking 

is done in such a way that the most relevant attribute is given 

the highest rank. Then the test data is loaded and the learned 

model is evaluated on the test data set. The performance 

evaluation is done by analyzing the data set on the three 

algorithms. Different measures such as processing time, 

sensitivity, accuracy and misclassification cost are calculated. 

 
Figure 1: General architecture of the TSCS method 

 

3.1 Preprocessing 

 

The training and test data are preprocessed in order to 

improve the quality of data. This includes removing 

irrelevant attributes, inconsistent data and repeated rows. If 

the value of an attribute results in both defect-prone and not-

defect prone modules, that particular attribute cannot be 

taken for making a factor in defect prediction process. Such 

attributes are removed in this stage. Thus after pre-

processing, the dataset will be a reduced one containing only 

relevant attributes. 

 

3.2 Feature Extraction 

 

The features are extracted in a cost-sensitive way that 

addresses the issue of classification in the presence of 

varying costs associated with different types of 

misclassification. Consider the class labels {1,….,c}. The 

cost of misclassifying a sample from the ith class (i is in 

{1,….,c-1} ) as the cth class will be very high. The class 

from 1
st
 class to c-1th class is the in-group class where as the 

cth class is the out-group class. The cost of misclassifying a 

sample from the out-group class as being from the in-group 

class is known as the cost of false acceptance. The cost of 

misclassifying a sample from the in-group class as being 

from the out-group class is known as the cost of false 

rejection. The cost of misclassifying a sample from the in-

group class as being from another in-group class is known as 

the cost of false identification. Defect-prone modules are 

considered as being from the out-group class and not-defect-

prone modules from the in-group class.  

 

A cost matrix is constructed as shown in Table I, where the 

element cost (i,j) indicates the cost of classifying a sample 

from the ith class as the jth class. This mainly focuses on 

calculating the cost of misclassification so that identifying it 

at an earlier stage will reduce the total cost. The diagonal 

elements in the cost matrix are zero because they will 

represent a correct classification. The importance of each 

class can be identified from the cost matrix. It is calculated 

from the cost of false identification and false rejection for the 

in-group class and from the cost of false acceptance for the 

out-group class. It is necessary to know how far a class is 

important, as it is one of the main factors used in the feature 

selection algorithms..  

 

Table 1: The cost matrix 

 
 

3.2.1  Cost Sensitive Variance Score 

Variance score is a simple unsupervised evaluation criterion 

of features. It selects features that have the maximum 

variance among all samples with the basic idea that variance 

among a feature space reflects the representative power of 

this feature. In this method, the mean of each attribute among 

all the samples is calculated. Then the variance of each 

feature from the mean value is calculated. The variance of a 

good feature from the out-group class should be larger than 

that of the in-group class. So the features with maximum 
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variance score are considered to be important in the defect 

prediction process and they are selected. 

 

3.2.2 Cost Sensitive Laplacian Score 

Laplacian score is an unsupervised feature selection method 

which performs feature selection according to the constraint 

preserving ability of features with stronger locality 

preserving ability. The laplacian score of a feature is 

calculated by considering the neighborhood relation between 

two samples and the cost of misclassification of a sample 

from one class as being from another class. The 

misclassification cost can be obtained from the cost matrix. 

The features having minimum laplacian score are selected. 

 

3.2.3 Cost Sensitive Constraint Score 

Constraint score is a semi-supervised feature selection 

method which selects features with stronger locality 

preserving ability. It uses must-link and cannot-link pair-wise 

constraints as supervision information. Must-link pair-wise 

constraints specify a pair of data samples that belong to the 

same class and cannot-link pair-wise constraints specify a 

pair of data samples that belong to different classes. The 

constraint score is calculated by considering the importance 

of the class for must-link constraints and the cost of 

misclassification for cannot-link constraints. The features 

having minimum constraint score are selected. 

 

3.3 Defect Prediction 

 

Once the relevant features are selected, they are re-sampled. 

It involves resetting the values of attributes that do not 

contribute for defect prediction to zero. Then a decision tree 

is constructed by which each of the selected attribute is given 

a rank. The attribute with highest rank will form the root of 

the tree. Each attribute will be assigned the range of values it 

falls within. The defect prediction is done by finding out 

whether the attribute values are defect prone or not. The test 

data is loaded and the learned model is evaluated on the test 

data set. 

 

4. Analysis 
 

The classification results can be represented by the confusion 

matrix with two rows and columns as shown in Table II. True 

Positive (TP) refers to the number of defect-prone values that 

are correctly classified. True Negative (TN) refers to the 

number of not-defect-prone values that are correctly 

classified. False Positive (FP) refers to the number of not-

defect-prone values that are classified as defect-prone. False 

Negative refers to the number of defect-prone values that are 

classified as not-defect-prone. Sensitivity measures the 

proportion of defect-prone modules correctly classified. 

Accuracy measures the proportion of samples correctly 

classified among the whole population. 

 

Table 2: Confusion matrix 

 

 
 

 
 

The analysis also includes the comparison of the three feature 

selection algorithms. The factors included for comparison are 

the number of true positive, false positive, true negative, false 

negative, sensitivity, accuracy, processing time and the 

misclassification cost. 

 

3.4 Conclusion 

 

A two-stage cost-sensitive learning by utilizing cost 

information in the feature selection stage and in the 

classification stage has been proposed in this paper. The 

datasets from NASA has been used for evaluating the 

proposed method. It has been found that the cost-sensitive 

learning performed better than cost-blind learning. The usage 

of cost information in the feature selection stage resulted in 

early defect prediction so that lesser time and effort are 

required for maintenance of the software. Identifying the 

misclassification cost at an earlier stage helps in reducing the 

total cost of building the software. 
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