$\pi g\beta$ -Normal Spaces in Topological Spaces

Hamant Kumar¹, Umesh Chand², Rajpal Rajbhar³

¹N.R.E.C College, Department of Mathematics, Khurja- 203131, UP, India

²Kirori Mal College, Department of Mathematics, University of Delhi, Delhi - 110007

³Atma Ram Sanatan Dharma College, Department of Mathematics, University of Delhi, Delhi – 110021

Abstract: The aim of this paper is to introduce a new class of normal spaces called $\pi g \beta$ -normal spaces, by using $\pi g \beta$ -open sets. We prove that $\pi g \beta$ -normality is a topological property and it is a hereditary property with respect to π -open, $\pi g \beta$ -closed subspaces. Further we obtain a characterization and preservation theorems for $\pi g \beta$ -normal spaces.

Keywords: regular closed, π -closed, π g β -closed, and β -open sets; pre β -closed, π -continuous, π g β -continuous, π -irresolute, π g β -irresolute and almost β -irresolute functions; π g β -normal spaces

1. Introduction

In 1970, Levine [7] defined generalized closed sets in topological spaces. In 1989, Nour [9] introduced the notion of p-normal spaces and obtained characterization and preservation theorems for p-normal spaces. In 1990, Mahmoud and Monsef [8] introduced the concept of β -normal spaces. In 1995, Dontchev [5] introduced a new class of sets called $g\beta$ -closed sets. In 2010, Tahiliani [10] introduced the notion of $\pi g\beta$ -closed sets and its properties are studied. Recently, Thanh and Thinh [12] introduced the notion of πgp -normal spaces and prove that πgp -normality is a topological property and it is a hereditary property with respect to π -open, πgp -closed subspaces.

In this paper, we introduce and study a new class of normal spaces called $\pi g\beta$ -normal spaces by using $\pi g\beta$ -open sets. We prove that $\pi g\beta$ -normality is a topological property and it is a hereditary property with respect to π -open, $\pi g\beta$ -closed subspaces. Further we obtain a characterization and preservation theorems for $\pi g\beta$ -normal spaces

2. Preliminaries

Throughout this paper, spaces (X, τ), (Y, σ), and (Z, γ) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a space X. The closure of A and interior of A are denoted by cl(A) and int(A) respectively. A subset A is said to be regular open [6] (resp. regular closed [6]) if A = int(cl(A)) (resp. A = cl(int(A)). The finite union of regular open sets is said to be π -open [15]. The complement of a π open set is said to be π - closed [15]. A is said to be β -open [1] if $A \subset cl(int(cl(A)))$. The family of all β -open sets of X is denoted by $\beta O(X)$. The complement of a β -open set is said to be β -closed [1]. The intersection of all β -closed sets containing A is called β -closure [2] of A, and is denoted by β cl(A). The **\beta-Interior** [2] of A, denoted by β int(A), is defined as union of all β -open sets contained in A. It is well known $\beta cl(A) = A \cup int(cl(int(A)))$ and $\beta int(A) = A \cap$ cl(int(cl(A))).

2.1 Definition

A subset A of a space X is said to be

(1) generalized closed (briefly g-closed) [7] if $cl(A) \subset U$ whenever $A \subset U$ and $U \in \tau$.

(2) generalized β - closed (briefly $g\beta$ -closed) [5] if β cl(A) \subset U whenever A \subset U and U $\in \tau$.

(3) $\pi g\beta$ -closed [10] if $\beta cl(A) \subset U$ whenever $A \subset U$ and U is π - open in X.

(4) **g-open** (resp. **g** β **-open**, **\pig\beta-open**) if the complement of A is g-closed (resp. g β -closed, π g β -closed).

The intersection of all $\pi g\beta$ -closed sets containing A is called $\pi g\beta$ -closure of A, and is denoted by $\pi g\beta cl(A)$. The $\pi g\beta$ -interior of A, denoted by $\pi g\beta int(A)$, is defined as union of all $\pi g\beta$ -open sets contained in A. The family of all $\pi g\beta$ -open (resp. $\pi g\beta$ -closed) sets of X is denoted by $\pi g\beta O(X)$ (resp. $\pi g\beta C(X)$.

2.2 Definition

A space X is said to be β -normal [8] (resp. p-normal [9]) if for every pair of disjoint closed subsets A, B of X, there exist disjoint β -open (resp. p-open) sets U, V of X such that $A \subset U$ and $B \subset V$

2.3 Definition

A space X is said to be $\pi\beta$ -normal [14] (resp. πp -normal [11]) if for every pair of disjoint closed subsets A, B of X, one of which is π -closed, there exist disjoint β -open (resp. p-open) sets U, V of X such that $A \subset U$ and $B \subset V$.

2.4 Definition

A subset A of a space X is said to be a β -neighborhood [8] of x if there exists a β -open set U such that $x \in U \subset A$.

2.5 Definition. A function $f: X \rightarrow Y$ is said to be

(a) **regular open** [13] if f(U) is regular open in Y for every open set U in X.

(b) π -continuous [4] if f⁻¹(F) is π -closed in X for each closed set F in Y.

(c) **pre-\beta-closed** [8] (resp. **pre** β -**open** [8]) f(F) is β -closed (resp. β -open) set in for every β -closed (resp. β -open) set F in X.

(d) $\pi g\beta$ -continuous [10] if f⁻¹(F) is $\pi g\beta$ -closed in X for every closed set F in Y.

(e) $\pi g\beta$ -irresolute [10] if f⁻¹(F) is $\pi g\beta$ -closed in X for every $\pi g\beta$ -closed set F in Y.

(f) **almost** β -irresolute [8] if for each $x \in X$ and β -neighborhood V of f(x) in Y, $\beta cl(f^{-1}(V))$ is neighborhood of x in X.

3. $\pi G\beta$ -Normal Spaces

In this section, we introduce the notion of $\pi g\beta$ -normal space and study some property of it. First, we begin with the following definitions and examples.

3.1 Definition

A space X is said to be $\pi g\beta$ -normal (resp. πgp -normal [12]) if for every pair of disjoint $\pi g\beta$ -closed (resp. πgp -closed) subsets H and K of X, there exist disjoint β -open (resp. p-open) sets U, V of X such that $H \subset U$ and $K \subset V$.

Clearly, from above definitions, we have the following diagram:

 π gp –normality \Rightarrow p-normality \Rightarrow π p-normality

 $\pi g\beta$ -normality $\Rightarrow \beta$ -normality $\Rightarrow \pi\beta$ -normality

Where none of the above implications is reversible as can be seen from the following examples:

3.2 Example

We consider the topology $\tau = \{\emptyset, \{b, d\}, \{a, b, d\}, \{b, c, d\}, X\}$ on the set $X = \{a, b, c, d\}$. Then, the space X is p-normal as well as β -normal. But it is neither π gp-normal nor π g β -normal.

3.3 Example

Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{b\}, \{d\}, \{b, d\}, \{a, b, d\}, \{b, c, d\}, X\}$. Then the space X is β -normal as well as $\pi\beta$ -normal but it is not p-normal.

3.4 Example

Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a\}, \{c\}, \{a, c\}, \{a, b, d\}, \{b, c, d\}, X\}$. The pair of disjoint closed subsets of X are $A = \{a\}$ and $B = \{c\}$. Also $U = \{a, b\}$ and $V = \{c, d\}$ are β -open sets such that $A \subset U$ and $B \subset V$. Hence X is β -normal as well as $\pi\beta$ -normal.

3.5 Example

Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a\}, \{b, d\}, \{a, b, d\}, \{b, c, d\}, X\}$. Then, the space X is β -normal.

3.6 Theorem

For a topological space X, the following are equivalent:

(a) X is $\pi g\beta$ -normal.

(b) For every pair of disjoint $\pi g\beta$ -open subsets U and V of X whose union is X, there exist β -closed subsets G and H of X such that $G \subset U$, $H \subset V$ and $G \cup H = X$.

(c) For every $\pi g\beta$ -closed set A and every $\pi g\beta$ -open set B in X such that $A \subset B$, there exists a β -open subset V of X such that $A \subset V \subset \beta cl(V) \subset B$.

(d) For every pair of disjoint $\pi g\beta$ -closed subsets A and B of X, there exists a β -open subset V of X such that $A \subset V$ and $\beta cl(V) \cap B = \emptyset$.

(e) For every pair of disjoint $\pi g\beta$ -closed subsets A and B of X, there exist β -open subsets U and V of X such that $A \subset U$, $B \subset V$ and $\beta cl(U) \cap \beta cl(V) = \emptyset$.

Proof

(a) \Rightarrow (b), (b) \Rightarrow (c), (c) \Rightarrow (d), (d) \Rightarrow (e) and (e) \Rightarrow (a).

(a) \Rightarrow (b) Let U and V be any $\pi g\beta$ -open subsets of a $\pi g\beta$ normal space X such that $U \cup V = X$. Then, $X \setminus U$ and $X \setminus V$ are disjoint $\pi g\beta$ -closed subsets of X. By $\pi g\beta$ -normality of X, there exist disjoint β -open subsets U_1 and V_1 of X such that $X \setminus U \subset U_1$ and $X \setminus V \subset V_1$. Let $G = X \setminus U_1$ and $H = X \setminus$ V_1 . Then, G and H are β -closed subsets in X such that G \cup H = X.

(b) \Rightarrow (c). Let A be a $\pi g\beta$ -closed and B is $\pi g\beta$ -open subsets of X such that A \subset B. Then, A \cap (X \ B) = Ø. Thus, X \ A and B are $\pi g\beta$ -open subsets of X such that (X \ A) \cup B = X. By the Part (b), there exist β -closed subsets G and H of X such that G \subset (X \ A), H \subset B and G \cup H = X. Thus, we obtain that A \subset (X \ G) \subset H \subset B. Let V = X \ G. Then V is β -open subset of X and $\beta cl(V) \subset$ H as H is β -closed set in X. Therefore, A \subset V $\subset \beta cl(V) \subset$ B.

(c) \Rightarrow (d). Let A and B be disjoint $\pi g\beta$ -closed subset of X. Then A \subset X \ B, where X \ B is $\pi g\beta$ -open. By the part (c), there exists a β -open subset U of X such that A \subset U $\subset \beta c1(U) \subset X \setminus B$. Thus, $\beta c1(U) \cap B = \emptyset$.

(d) \Rightarrow (e). Let A and B be any disjoint $\pi g\beta$ -closed subset of X. Then by the part (d), there exists a β -open set U containing A such that $\beta cl(U) \cap B = \emptyset$. Since $\beta cl(U)$ is β -closed, then it is $\pi g\beta$ -closed. Thus $\beta cl(U)$ and B are disjoint $\pi g\beta$ -closed subsets of X. Again by the part (d), there exists a β -open set V in X such that $B \subset V$ and $\beta cl(U) \cap \beta cl(V) = \emptyset$.

(e) \Rightarrow (a). Let A and B be any disjoint $\pi g\beta$ -closed subsets of X. Then by the part (e), there exist β -open sets U and V such that $A \subset U$, $B \subset V$ and $\beta cl(U) \cap \beta cl(V) = \emptyset$. Therefore, we obtain that $U \cap V = \emptyset$ and hence X is $\pi g\beta$ -normal.

3.7 Lemma

(a) The image of β -open subset under an open continuous function is β -open.

(b) The inverse image of β -open (resp. β -closed) subset under an open continuous function is β -open (resp. β -closed) subset.

3.8 Lemma [12]

The image of a regular open subset under open and closed continuous function is regular open subset.

3.9 Proposition [12]

The image of a π -open subset under open and closed continuous function is π -open set.

3.10 Proposition

If $f : X \to Y$ be an open and closed continuous bijection function and A be a $\pi g\beta$ -closed set in Y, then $f^{-1}(A)$ is $\pi g\beta$ -closed set in X.

Proof. Let A be a $\pi g\beta$ -closed subset of Y and U be any π open subset of X such that f ${}^{-1}(A) \subset U$. Then by the **Proposition 3.9**, we have f (U) is π -open subset of Y such that $A \subset f(U)$. Since A is $\pi g\beta$ -closed subset of Y and f(U) is π -open set in Y, thus $\beta cl(A) \subset U$. By the **Lemma 3.7**, we obtain that $f {}^{-1}(A) \subset f {}^{-1}(\beta cl(A)) \subset U$, where $f {}^{-1}(\beta cl(A))$ is β closed in X. This implies that $\beta cl(f {}^{-1}(A)) \subset U$. Therefore, $f {}^{-1}(A)$ is $\pi g\beta$ -closed set in X.

3.11 Theorem. π g β -normality is a topological property.

Proof. Let X be a $\pi g\beta$ -normal space and $f : X \to Y$ be an open and closed bijection continuous function. We need to show that Y is $\pi g\beta$ -normal. Let A and B be any disjoint $\pi g\beta$ -closed subsets of Y. Then by the **Proposition 3.10**, f⁻¹(A) and f⁻¹(B) are disjoint of $\pi g\beta$ -closed subsets of X. By $\pi g\beta$ -normality of X, there exist β -open subsets U and V of X such that f⁻¹(A) \subset U, f⁻¹(B) \subset V and U \cap V = \emptyset . By assumption, we have A \subset f(U), B \subset f (V) and f(U) \cap f (V) = \emptyset . By the **Lemma 3.7**, f(U) and f(V) are disjoint β -open subsets of Y such that A \subset f(U) and B \subset f(V). Hence, Y is $\pi g\beta$ -normal.

4. $\pi G\beta$ -normality in subspaces

4.1 Lemma. If M be an open subspace of a space X and A $\subset M$, then $\beta cl_M(A) = \beta cl_X(A) \cap M$.

4.2 Lemma [12].If M be an open subspace of a space X and $A \subset M$, then $int_M(cl_M(A) = int_X(cl_X(A) \cap M)$.

4.3 Lemma [12]. If M be a π -open subspace of a space X and U be a π -open subset of X, then U \cap M is π -open set in M.

4.4 Lemma. If A is both π -open and $\pi g\beta$ -closed subset of a space X, then A is β -closed set in X.

Proof. Since A is $\pi g\beta$ -closed and π -open subset of X and since A \subset A, then $\beta cl(A) \subset A$. But A $\subset \beta cl(A)$. Thus, A = $\beta cl(A)$. Hence, A is β -closed set in X.

4.5 Corollary. If A is both π -open and $\pi g\beta$ -closed subset of a space X, then A is regular closed set in X.

4.6 Theorem. Let M be a π -open subspace of a space X and A \subset M. If M is π g β -closed set in X and A is π g β -closed set in M. Then A is π g β -closed set in X.

Proof. Suppose that M is $\pi g\beta$ -closed set in X and A is $\pi g\beta$ closed set in M. Let U be any π -open set in X such that A \subset U. Then by **Lemma 4.3**, we have $A \subset M \cap U$, where M \cap U is π -open set in M. Since A is $\pi g\beta$ -closed in M, thus $\beta cl_M(A) \subset M \cap U$. The by the **Lemma 4.1**, $\beta cl_X(A) \cap M$ $\subset M \cap U$. By the **Lemma 4.4**, we obtain that $\beta cl_X(M) = M$. Thus, $\beta cl_X(A) \subset \beta cl_X(M) = M$. So, $\beta cl_X(A) \cap M = \beta cl_X(A)$. Hence, $\beta cl_X(M) \subset U \cap M$. Thus, $\beta cl_X(A) \subset U$. Therefore, A is $\pi g\beta$ -closed set in X.

4.7 Lemma. Let M be a closed domain subspace of a space X. If U is β -open set in X, then U \cap M is β -open set in M.

4.8 Theorem. A $\pi g\beta$ -closed and π -open subspace of a $\pi g\beta$ -normal space is $\pi g\beta$ -normal.

Proof. Let M be a $\pi g\beta$ -closed and π -open subspace of a $\pi g\beta$ -normal space X. Let A and B be any disjoint $\pi g\beta$ -closed subsets of M. Then by **Theorem 4.6**, we have A and B are disjoint $\pi g\beta$ -closed sets in X. By $\pi g\beta$ -normality of X, there exist β -open subsets U and V of X such that $A \subset U$, B $\subset V$ and $U \cap V = \emptyset$. By the **Corollary 4.5** and **Lemma 4.7**, we obtain that $U \cap M$ and $V \cap M$ are disjoint β -open sets in M such that $A \subset U \cap M$ and $B \subset V \cap M$. Hence, M is $\pi g\beta$ -normal subspace of $\pi g\beta$ -normal space X.

5. Preservation theorems for $\pi G\beta$ -Normality

5.1 Definition

A function $f: X \to Y$ is said to be π -irresolute [3] if $f^{-1}(F)$ is π -closed in X for every π -closed set F in Y.

5.2 Theorem

If $f : X \to Y$ is π -irresolute, pre β -closed and A is a $\pi g\beta$ -closed subset of X, then f(A) is $\pi g\beta$ -closed subset of Y.

Proof. Let A be a $\pi g\beta$ -closed subset of X and U be any π open set of Y such that $f(A) \subset U$. Then, $A \subset f^{-1}(U)$. Since f is π -irresolute function, then $f^{-1}(U)$ is π -open in X. Since A is $\pi g\beta$ -closed set in X and $A \subset f^{-1}(U)$, then $\beta cl_X(A) \subset f^{-1}(U)$. This implies that $f(\beta cl_X(A)) \subset U$. Since f is pre β -closed and $\beta cl_X(A)$ is β -closed set in X, then $f(\beta cl_X(A))$ is β -closed in Y. Thus, we have $\beta cl_Y(f(A)) \subset U$. Hence, f(A) is $\pi g\beta$ -closed subset of Y.

5.3 Corollary

If $f: X \to Y$ is π -continuous, pre β -closed and A is a $\pi g\beta$ -closed subset of X, then f(A) is $\pi g\beta$ -closed subset of Y.

5.4 Theorem

If $f: X \to Y$ is π -irresolute, pre β -closed and β -irresolute injection function from a space X to a $\pi g\beta$ -normal Y, then X is $\pi g\beta$ -normal.

Proof. Let A and B be any two disjoint $\pi g\beta$ -closed subsets of X. By the **Theorem 5.2** f(A) and f(B) are disjoint $\pi g\beta$ -closed subsets of Y. By $\pi g\beta$ -normality of Y, there exist disjoint β -open subsets U and V of Y such that $f(A) \subset U$, $f(B) \subset V$ and $U \cap V = \emptyset$. Since f is β -irresolute injection function, then f⁻¹(U) and f⁻¹(V) are disjoint β -open sets in X such that $A \subset f^{-1}(U)$ and $B \subset f^{-1}(V)$. Hence X is $\pi g\beta$ -normal.

5.5 Corollary

If $f : X \to Y$ is π -continuous, pre β -closed and β -irresolute injection function from a space X to a $\pi g\beta$ -normal Y, then X is $\pi g\beta$ -normal.

5.6 Lemma

If the bijection function $f : X \rightarrow Y$ is β -continuous and regular open, then f is $\pi g\beta$ -irresolute.

5.7 Theorem

If $f: X \to Y$ is $\pi g\beta$ -irresolute, pre β -closed bijection function from a $\pi g\beta$ -normal space X to a space Y, then Y is $\pi g\beta$ normal.

Proof. Let A and B be any two disjoint $\pi g\beta$ -closed subsets of Y. Since f is $\pi g\beta$ -irresolute, we have f⁻¹(A) and f⁻¹(B) are disjoint $\pi g\beta$ -closed subsets of X. By $\pi g\beta$ -normality of X, there exist disjoint β -open sets U and V in X such that f⁻¹(A) \subset U, f⁻¹(B) \subset V and U \cap V = \emptyset . Since f is pre β -open and bijection function, we have f(U) and f(V) are disjoint β -open sets in Y such that A \subset f(U), B \subset f(V) and f(U) \cap f(V) = \emptyset . Therefore, X is $\pi g\beta$ -normal.

5.8 Corollary

If $f: X \to Y$ is β -continuous, regular open and pre β -open bijection function from a $\pi g\beta$ -normal space X to a space Y, then Y is $\pi g\beta$ -normal.

5.9 Theorem

If $f : X \to Y$ is a pre β -open, $\pi g\beta$ -irresolute and almost β -irresolute surjection function from a $\pi g\beta$ -normal space X onto a space Y, then Y is $\pi g\beta$ -normal.

Proof. Let A be a $\pi g\beta$ -closed subset of Y and B be a $\pi g\beta$ open subset of Y such that $A \subset B$. Since f is $\pi g\beta$ -irresolute, we obtain that $f^{-1}(A)$ is $\pi g\beta$ -closed in X and $f^{-1}(B)$ is $\pi g\beta$ open in X such that $f^{-1}(A) \subset f^{-1}(B)$. Since X is $\pi g\beta$ -normal, then by the Part (c) of the **Theorem 3.6**, there exists a β open set U of X such that $f^{-1}(A) \subset U \subset \beta cl_X(U) \subset f^{-1}(B)$. Then, $f(f^{-1}(A)) \subset f(U) \subset f(\beta cl_X(f(U)) \subset f(f^{-1}(B))$. Since f is pre β -open, almost β -irresolute surjection, we obtain that $A \subset f(U) \subset \beta cl_Y(f(U)) \subset B$ and f(U) is β -open set in Y. Hence by the **Theorem 3.6**, we have Y is $\pi g\beta$ -normal.

References

- [1] M. E. Abd EI-Monsef, S.N. EL Deeb and R. A. Mohamoud, β open sets and β -continuous mappings, Bull. Fac. Assiut Univ. Sci., **12**(1983), 77-90.
- [2] M. E. Abd EL-Monsef , R. A. Mahmoud, and E. R. Lashin, β closure and β -interior, Rep., J. Fac. Of Edu. Ain Shams Univ., **10**(1986), 235.
- [3] A. Aslim, A. Caksu Guler and T. Noiri, On π gs-closed sets in topological spaces, Acta Math. Hungar., **112**(2006), 275-283.
- [4] J. Dontchev and T. Noiri, Quasi-normal spaces and πgclosed sets, Acta Math. Hungar., 89(3)(2000), 211-219.
- [5] J. Dontchev, On generalizing semi- preopen sets, Mem. Fac. Sci. Kochi Univ. Math., 16 (1995), 35.
- [6] C. Kuratowski, Topology I, 4th, ed, In French, Hafner, New York, 1958.
- [7] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2),19(1970), 89-96.
- [8] R. A. Mahmoud, and M. E. Abd EI-Monsef, β -irresolute and β -topological invariant, Proc. Pakistan Acad. Sci., **27**(1990), 285-296.
- [9] T. M. Nour, Contribution to the Theory of Bitopological Spaces, Ph. D. Thesis, Delhi Univ., 1989.
- [10] S. Tahiliani, On $\pi g\beta$ -closed sets in topological spaces, Node M. 30(1) (2010), 49-55.
- [11] S. A. S. Thabit and H. Kamaruihaili, π p-normality on topological spaces, Int. J. Math. Anal., 6(21) (2012), 1023-1033.
- [12] L. N. Thanh and B. Q. Thinh, π gp-normal topological spaces, Journal of Advanced Studied in Topology, Vol. 4, no. 1 (2013), 48-54.
- [13] J. H. Park and J. K. Park. On π gp-continuous functions in topological spaces. Chaos Solutions and Fractals, 20(2004), 467-477.
- [14] M. C. Sharma and Hamant Kumar, $\pi\beta$ -normal Spaces, Acta Ciencia Indica, Vol. XXXVI M.no.4, (2010), 611-616.
- [15] V. Zaitsev, On certain classes of topological spaces and their biocompactifications, Dokl. Akad. Nauk SSSR, 178(1968), 778-779

Author Profile

Umesh Chand received the M.Phil (Some new mappings in Topological spaces) from Chaudhary Charan Singh University, Meerut, UP in 2011