Smarandache Fuzzy Strong Ideal and Smarandache Fuzzy n-Fold Strong Ideal of a BH-Algebra

Shahrezad Jasim Mohammed

Abstract: In this paper, we define the concepts of a Q-Smarandache n-fold strong ideal and Q-Smarandache fuzzy (strong, n-fold strong) ideal of a BH- algebra .Also, we study some properties of these fuzzy ideals

Keywords: BCK-algebra, BCI/BCH-algebras, BH-algebra, Smarandache BH-algebra, Q-Smarandache fuzzystrong ideal.

1. Introduction

In 1965, L. A. Zadeh introduced the notion of a fuzzy subset of a set as a method for representing uncertainty in real physical world [7]. In 1991, O. G. Xi applied the concept of fuzzy sets to the BCK-algebras [8] . In 1993, Y. B. Jun introduced the notion of closed fuzzy ideals in BCI algebras[11].In 1999, Y.B.Jun introduced the notion of fuzzy closed ideal in BCH-algebras [13]. In 2001, Q. Zhang, E. H. Roh and Y. B. Jun studied the fuzzy theory in a BH-algebra [10] . In 2006, C.H. Park introduced the notion of an interval valued fuzzy BH-algebra in a BH-algebra [2].In 2009, A. B. Saeid and A. Namdar, introduced the notion of a Smarandache BCH-algebra and Q-Smarandache ideal of a Smarandache BCH-algebra [1].In 2012, H. H .Abbass introduced the notion of a Q-Smarandache fuzzy closed ideal with respect to an element of a Smarandache BCHalgebra [5].In the seam year, E.M. kim and S. S. Ahn defined the notion of a fuzzy (n-fold strong) ideal of a BHalgebra[3]. In 2013, E.M. kim and S. S. Ahn defined the notion of a fuzzy (strong) ideal of a BH-algebra[4].In the same year, H. H. Abbass and S. J. Mohammed introduced the Q-Smarandache fuzzy completely closed ideal with respect to an element of a BH-algebra[6]. In this paper, we define the concepts of Q-Smarandachen-fold strong ideal anda Q-Smarandache fuzzy (strong, n-fold strong) ideal of a Smarandache BH- algebra .Also, we study some properties of these fuzzy ideals

2. Preliminaries

In this section, we give some basic concept about a BCKalgebra ,a BCI-algebra ,a BH-algebra , a BH*-algebra,a normal BH-algebra, fuzzy strong ideal, fuzzyn-fold strong ideala Smarandache BH-algebra,(Q-Smarandache ideal, Q-Smarandache fuzzyclosedideal, Q-Smarandache fuzzy completely closed ideal and Q-Smarandache fuzzy ideal of BH-algebra

Definition 1 (see[11]).A BCI-algebra is an algebra (X,*,0), where X is a nonempty set, "*" is a binary operation and 0 is a constant, satisfying the following axioms : for all x, y, $z \in X$:

i. ((x * y) * (x * z)) * (z * y) = 0, ii. (x*(x*y))*y = 0, iii. x * x = 0, iv. x * y = 0 and $y * x = 0 \Rightarrow x = y$.

Definition 2 (see [8]). A **BCK-algebra** is a BCI-algebra satisfying the axiom

v. 0 * x = 0 for all $x \in X$.

Definition 3(see[9]). A **BH-algebra** is a nonempty set X with a constant 0 and a binary operation "*" satisfying the following conditions:i.x*x=0, $\forall x \in X$ ii. x*0=x, $\forall x \in X$. iii. x*y=0 and $y*x=0 \Rightarrow x = y$; for all $x,y \in X$.

Definition4.(see[4]). A BH-algebraX is called a **BH*-algebra** if (x*y)*x=0 for all $x,y\in X$

Definition5.(see[9]). A BH-algebra X is said to be a **normalBH-algebra** if it satisfying the following condition: i. $0^*(x^*y) = (0^*x)^*(0^*y), \forall x, y \in X$. ii. $(x^*y)^*x = 0^*y, \forall x, y \in X$. iii. $(x^*(x^*y))^*y = 0, \forall x, y \in X$.

Definition 6.(see[5]) . Let X be a BH-algebra. Then the set $X_{+}=\{x \in X: 0^{*}x=0\}$ is called the **BCA-part** of X.

Remark 1(see[6]).Let X and Y be BH-algebras. A mapping $f: X \rightarrow Y$ is called a **homomorphism** if $f(x^*y)=f(x)^* f(y)$ for all x, $y \in X$. A homomorphism f is called a **monomorphism** (resp., **epimorphism**) if it is injective (resp., **surjective**). For any homomorphism $f:X \rightarrow Y$, the set { $x \in X : f(x)=0$ } is called the **kernel** of f, denoted by Ker(f), and the set { $f(x) : x \in X$ } is called the **image** of f, denoted by Im(f). Notice that f(0)=0' for all homomorphism f.

Definition7 (see[3]). Let X be a BH-algebraand n be a positive integer. A nonempty subset I of X is called a *n-fold* strong ideal of X if it satisfies: i. $0 \in I$, ii. $\forall y \in I$ and $(x^* y)^* z^n \in I \Rightarrow x^* z^n \in I, \forall x, z \in X$.

Definition 8.(see[6]). A Smarandache BH**-algebra** is defined to be a BH-algebra X in which there exists a proper subset Q of X such that

```
i. 0 \in Q and |Q| \ge 2.
```

ii. Q is a BCK-algebra under the operation of X.

Definition9 (see[6]). Let X be a Smarandache BH-algebra . A nonempty subset I of X is called a *Smarandache strong ideal of X related toQ* (or briefly, *Q- Smarandache strong ideal* of X) if it satisfies: i. $0 \in I$, ii. $\forall y \in I$ and $(x^* y)^* z \in I \Rightarrow x^* z \in I, \forall x, z \in Q$. **Definition 10(see[7]).** Let μ be a fuzzy set in X, for all $t \in [0,1]$. The set $\mu_t = \{x \in X, \mu(x) \ge t\}$ is called a *level subset* of μ .

Definition11(see [4)].Let A and B be any two sets, μ be any fuzzy set in A and $f : A \to B$ be any function. Set $f^{-1}(y) = \{x \in A | f(x) = y\}$ for $y \in B$. The fuzzy set v in B defined by $v(y) = \{\sup_{0 \text{ otherwise}} \{\mu(x) | x \in f^{-1}(y)\} \text{ if } f^{-1}(y) \neq \emptyset$

for all $y \in B$, is called the *image* of μ under f and is denoted by $f(\mu)$.

Definition 12(see[4].Let *A* and *B* be any two sets, $f: A \to B$ be any function and v be any fuzzy set in f(A). The fuzzy set μ in A defined by: $\mu(x) = \nu(f(x))$ for all $x \in X$ is called the *preimage* of v under *f* and is denoted by $f^{-1}(\nu)$.

Definition13.(see[4].A fuzzy set μ in a BH-algebra X is called a fuzzy strong ideal of X if i.For all $x \in X$, $\mu(0) \ge \mu(x)$. ii. μ (x *z) \ge min{ μ ((x *y) *z) , μ (y)}, \forall x; y \in X.

Definition14.(see[5].A fuzzy set μ in a BH-algebra X is called a fuzzy n-fold strong idealof X if i. For all $x \in X$, $(0) \ge \mu(x)$.

ii. μ (x *zⁿ) \ge min{ μ ((x *y) *zⁿ); μ (y)}, \forall x, y \in X.

Definition15(see [6]). A fuzzy subset μ of a Smarandache BH-algebra X is said to be a *Q-Smarandachefuzzy ideal* if and only if :

i. For all $x \in X$, $\mu(0) \ge \mu(x)$. ii.For all $x \in Q$, $y \in X$, $\mu(x) \ge \min\{ \mu(x^*y), \mu(y) \}$. Is said to be *closed* if $(0^*x) \ge \mu(x)$, for all $x \in X$.

Definition16(see[6]).Let X be a Smarandache BH-algebra and μ be a Q-Smarandache fuzzy ideal of X. Then μ is called *a Q-Smarandachefuzzy completely closed ideal* if $\mu(x^*y) \ge \min\{\mu(x), \mu(y)\}, \forall x, y \in X.$

Proposition1(see[6]).Let X be a BH*-algebra ,and μ be a Q-Smarandache fuzzy ideal. Then

i. μ is a Q-Smarandache fuzzy closed ideal of X.

ii. μ is a Q-Smarandache fuzzy completely closed ideal of X, if $X*X/\{0\} \subseteq Q$

3. The Main Results

In this paper, we give the concepts a Q-Smarandache n-fold strong ideal and a Q-Smarandache fuzzy (strong, n-fold strong) ideal of a BH- algebra .Also, we give some properties of these fuzzy ideals

Definition 1.A fuzzy subset of a BH-algebra X is called a Q-Smarandache fuzzy strong ideal, iff i. μ (0) $\ge \mu$ (x)) $\forall x \in X$

ii. $\mu(x^*z) \ge \min\{ \mu((x^*y)^*z), \mu(y)\}, \forall x, z \in Q.$

Example 1: The set $X=\{0,1,2,3\}$ with the following operation table

*	0	1	2	3
0	0	0	2	2
1	1	0	1	2
2	2	2	0	0
3	3	2	1	0

is a BH-algebra $Q=\{0,1\}$ is a BCK-algebra .Then (X,*,0) is a Smarandache BH-algebra.The fuzzy set μ which is defined by:

$$\mu(\mathbf{x}) = \begin{cases} 0.5 \ \mathbf{x} = 0.3 \\ 0.4 \ \mathbf{x} = 1.2 \end{cases}$$

is a Q-Smarandache fuzzy strong ideal , since: $i.\mu(0) = 0.5 \ge \mu(x) \forall x \in X$, ii. $\mu(x^*z) \ge \min\{ \mu((x^*y)^*z), \mu(y)\}, \forall x, z \in Q$.

But the fuzzy set $\mu(x) = \begin{cases} 0.5 \ x = 0,2,3 \\ 0.4 \ x = 1 \end{cases}$ is not a Q-Smarandache fuzzy strong ideal since $\mu(1^{*}0) = \mu(1) = 0.4 < \min\{\mu(1^{*}3)^{*}0), \mu(3)\} = 0.5$

Proposition1.Every Q-Smarandache fuzzy strong ideal of a Smarandache BH-algebra X is a Q-Smarandache fuzzy ideal of X.

Proof :Let μ be a fuzzy strong ideal of X. i. Let $x \in X \Rightarrow (0) \ge \mu(x)$. [By definition 1(i)] ii. let $x, z \in X$ and $y \in X \Rightarrow x, z \in Q$ $\Rightarrow \mu(x^*z) \ge \min\{\mu((x^*y)^*z), \mu(y)\}$ [By definition 1(ii)] When $z=0\Rightarrow\mu(x^*0) \ge \min\{\mu((x^*y)^*0), \mu(y)\}\Rightarrow\mu(x) \ge \min\{\mu(x^*y), \mu(y)\}$ $\Rightarrow \mu$ is a Q-Smarandache fuzzy ideal of X.

Proposition2. Let Q_1 and Q_2 be a BCK-algebras contained in a Smarandache BH- algebra X and $Q_1 \subseteq Q_2$. Let μ be Q_2 -Smarandache fuzzy strong ideal of X then μ is a Q_1 -Smarandache fuzzy strong ideal of X.

Proof :Let μ be a Q₂-Smarandache fuzzy strong ideal of X . i. Let $x \in X \Rightarrow \mu(0) \ge \mu(x)$. [Since μ is a Q₂ -Smarandache fuzzy strong ideal. By definition 1(i)]

ii. Let $x,z \in Q_1, y \in X \Longrightarrow x, z \in Q_2$

 $\Rightarrow \mu(\mathbf{x}^*\mathbf{z}) \ge \min\{\ \mu((\mathbf{x}^*\mathbf{y})^*\mathbf{z})\ ,\mu(\mathbf{y})\}\$

[Since μ is a Q_2 -Smarandache fuzzy strong ideal. By definition 1(ii)]

 $\Rightarrow \mu$ is a Q₁-Smarandache fuzzy strong ideal of X.

Proposition3. Every fuzzy strong ideal of a Smarandache BH-algebra X is a Q-Smarandache fuzzy strong ideal of X.

Proof :Let μ be a fuzzy strong ideal of X. i. Let $x \in X \Rightarrow \mu(0) \ge \mu(x)$. [By definition 13(i)] ii. let $x, z \in X$ and $y \in X \Rightarrow x, z \in Q$ $\Rightarrow \mu(x^*z) \ge \min\{\mu((x^*y)^*z), \mu(y)\}$ [By definition13(ii)] $\Rightarrow \mu$ is a Q-Smarandache fuzzy strong ideal of X.

Theorem 1. Let X be SmarandacheBH-algebra and let μ be a fuzzy set.Then μ is a Q-Smarandache fuzzy strong ideal if and only if $v(x) = \mu(x) / \mu(0)$ is a Q-Smarandache fuzzy strong ideal.

Proof: Let μ be a Q-Smarandache fuzzy strong ideal, 1) $v(0)=\mu(0) / \mu(0), \Rightarrow v(0)=1$ $\Rightarrow v(0) \ge v(x) \forall x \in X$

Volume 4 Issue 2, February 2015

2) $v(x*z) = \mu (x*z) / \mu (0)$ $\geq \min\{ \mu ((x^*y)^*z), \mu (y) \} / \mu (0) \}$ [Since μ is a Q-Smarandache fuzzy strong ideal. By definition1(ii)] $\geq \min\{\mu ((x^*y)^*z) / \mu (0), \mu (y) / \mu (0)\}$ $\geq \min\{v ((x^*y)^*z), v (y)\}$ $\Rightarrow v (x^*z) \ge \min\{v ((x^*y)^*z), v (y)\}$ $\Rightarrow v$ is a Q-Smarandache fuzzy strong ideal.**Conversely.**Let v be a Q-Smarandache fuzzy strong ideal. i. μ (0)= ν (0). μ (0), $\Rightarrow \mu$ (0) $\geq \nu$ (x). μ (0) $\Rightarrow \mu(0) \ge \mu(x) \forall x \in X$ ii. μ (x*z)= ν (x*z) . μ (0) \geq min{ ν (x*(y*z)), ν (y)}. μ (0) [Since μ ' is a Q-Smarandache fuzzy ideal.By definition1(i)] $\geq \min\{v((x^*y)^*z) \cdot \mu(0), v(y) \cdot \mu(0)\}$ $\geq \min\{\mu ((x^*y)^*z), \mu (y)\}\$ $\Rightarrow \mu(\mathbf{x}) \ge \min\{ \mu((\mathbf{x}^*\mathbf{y})^*\mathbf{z}), \mu(\mathbf{y}) \}$ $\Rightarrow \mu$ is a Q-Smarandache fuzzy strong ideal. **Proposition 4.**Let X be a BH*-algebra ,and μ be a Q-Smarandache fuzzy strong ideal. Then $i.\mu$ is a Q-Smarandache fuzzy closed idealof X. ii. μ is a Q-Smarandache fuzzy completely closed ideal of X, if $X^X/\{0\} \subseteq Q$. **Proof** :Let μ be a fuzzy strong ideal of X. [ByProposition1] $\Rightarrow \mu$ is a Q-Smarandache fuzzy ideal of X. i. $\Rightarrow \mu$ is a Q-Smarandache fuzzy closed ideal of X. [By proposition 1] ii. Let $x,y \in X \Rightarrow \mu$ is a Q-Smarandache fuzzy completely closed ideal of X.

[By proposition 1].

Theorem 2.Let A be a non-empty subset of a Q-Smarandache BH-algebra X and let μ be a fuzzy set in X defined by: $\mu(x) = \begin{cases} \alpha_{1 \ x \in Q} \\ \alpha_{2 \ otherwise} \end{cases}$

where $\alpha_1 > \alpha_2$ in [0, 1]. Then μ is a Q-Smarandache fuzzy strong ideal X

Proof : Let μ be a fuzzy set of X. i. $0 \in Q \Rightarrow \mu(0) = \alpha_1 \Rightarrow \mu(0) \ge \mu(x)$ [Since $\alpha_1 > \alpha_2$] ii. let x,z $\in Q$ and y $\in X \Rightarrow x^*z \in Q$ $\Rightarrow \mu(x^*z) = \alpha_1$ Then we have for cases.

Case1 If $((x^*y)^*z) = \alpha_1$ and $\mu(y) = \alpha_1$ $\Rightarrow \min\{\mu((x^*y)^*z), \mu(y)\} = \alpha_1$ $\Rightarrow \mu(x^*z) \ge \min\{\mu((x^*y)^*z), \mu(y)\}$

Case2 If $((x^*y)^*z) = \alpha_2$ and $\mu(y) = \alpha_1$ $\Rightarrow \min\{\mu((x^*y)^*z), \mu(y)\} = \alpha_2$ $\Rightarrow \mu(x^*y) = \min\{\mu(x^*y), \mu(y)\}$

Case3 If $((x^*y)^*z) = \alpha_1$ and $\mu(y) = \alpha_2$ $\Rightarrow \min\{\mu((x^*y)^*z), \mu(y)\} = \alpha_2$ $\Rightarrow \mu(x^*y) = \min\{\mu(x^*y), \mu(y)\}$

Case3 If $((x^*y)^*z) = \alpha_2$ and $\mu(y) = \alpha_2$ $\Rightarrow \min\{\mu((x^*y)^*z), \mu(y)\} = \alpha_2$ $\Rightarrow \mu(x^*y) = \min\{\mu(x^*y), \mu(y)\}$ $\Rightarrow \mu$ is a Q-Smarandache fuzzy strong ideal of X. **Theorem 3.** Let X be BH-algebra and let μ be a fuzzy set. Then μ is a Q-Smarandache fuzzy strong ideal if and only if $\mu(x) = \mu(x)+1-\mu$ (0) is a Q-Smarandache fuzzy strong ideal.

Proof: Let μ be a Q-Smarandache fuzzy strong ideal,

i. $\mu(0) = \mu(0) + 1 - \mu(0), \Rightarrow \mu(0) = 1$ $\Rightarrow \mu(0) \ge \mu(x) \forall x \in X$ ii. $\mu(x^*z) = \mu(x^*z) + 1 - \mu(0)$ $\ge \min\{ \mu((x^*y)^*z)), \mu(y)\} + 1 - \mu(0)[\text{Since } \mu \text{ is a Q-Smarandache fuzzy strong ideal. By definition1}]$ $\ge \min\{\mu((x^*y)^*z)) + 1 - \mu(0), \mu(y) + 1 - \mu(0)\} \ge \min\{\mu((x^*y)^*z)), \mu(y)\}$ $\Rightarrow \mu(x^*z) \ge \min\{\mu((x^*y)^*z)), \mu(y)\}$ $\Rightarrow \mu$ is a Q-Smarandache fuzzy strong ideal.

ConverselyLet μ be a Q-Smarandache fuzzy strong ideal. 1) μ (0)= μ (0)-1+ μ (0), $\Rightarrow \mu$ (0) $\geq \mu$ (x)-1+ μ (0) $\Rightarrow \mu$ (0) $\geq \mu$ (x) $\forall x \in X$ 2) μ (x*z)= μ (x*z)-1+ μ (0) $\geq \min\{ \mu((x*y)*z), \mu(y)\}$ -1+ μ (0) [Since μ ' is a Q-Smarandache fuzzy strong ideal. By definition1] $\geq \min\{\mu((x*y)*z)\}$ -1+ μ (0), μ (y) -1+ μ (0)} $\geq \min\{\mu((x*y)*z)\}$, μ (y)} $\Rightarrow \mu$ (x) $\geq \min\{ \mu((x*y)*z)\}$, μ (y)} $\Rightarrow \mu$ is a Q-Smarandache fuzzy strong ideal.

Theorem4. Let X be a Smarandache BH-algebra such that $X = X_+$ and μ be a Q-Smarandachestrong ideal of X. Then μ is a Q-Smarandache closed ideal of X.

Proof :Let μ be a Q-Smarandache strong ideal $\Rightarrow \mu I$ is a Q-Smarandache ideal of X. [Byproposition1] Now, let $x \in I$ $\Rightarrow (0^*x) = \mu (0) \ge \mu(x)$ [By definition 6] $\Rightarrow \mu$ is a Q-Smarandache closed ideal of X.

Proposition5. Let X be a Smarandache normal BH-algebra such that $X=X_+$ and let μ be a Q-Smarandache fuzzy strong ideal such that $x^*y \in Q, \forall x, y \in X$ and $y \neq 0$. Then μ is a Q-Smarandache fuzzy completely closed ideal of X.

Proof: Let μ I be a Q-Smarandache fuzzy strong ideal of X. ⇒ μ is a Q-Smarandache fuzzy ideal of X. [By remark3] Now, let x,y∈ X ⇒x*y ∈ Q [Since x*y∈ Q,∀x,y∈ X] We have μ (x*y) = μ ((x*y)*0) ≥ min{ μ (((x*y)*x)*0)), μ (x)} [By definition 3(ii)] = min{ μ ((x*y)*x), μ (x)}[By definition 3(ii)] = min{ μ (0*y), μ (x)} [By definition 5(ii)] = min{ μ (0), μ (x)} = μ (x) ⇒ μ (x*y) ≥ min{ μ (y), μ (x)} ⇒ μ is a Q-Smarandache fuzzy completely closed ideal. ■

Proposition 6.Let X be a normal BH-algebra such that $X*X{\{0\}} \subseteq Q$. Then every Q-Smarandache fuzzy strong ideal and closed of X is a Q-Smarandache fuzzy completely closed ideal of X.

Proof :Let μ be a Q-Smarandache fuzzy strong ideal of X.

 $\Rightarrow \mu \text{ is a Q-Smarandache fuzzy ideal of X. [By proposition1]}$ $Now, let x, y \in X. \Rightarrow x*y \in Q [Since X*X /{0} \subseteq Q]$ $\Rightarrow \mu(x*y) \ge \min{\mu((x*y)*x)*0), \mu(x)} [By definition1]$ $= \min{\mu(0*y), \mu(x)}[By definition 5(ii)]$ $\ge \min{\mu(y), \mu(x)}[By definition14]$ $\Rightarrow \mu is a Q-Smarandache fuzzy completely closed ideal of X.$

Remark 1. Let μ be a fuzzy set of a Smarandache BHalgebra X and $w \in X$. The set $\{x \in X: (w) \le \mu(x)\}$ is denoted by $\uparrow \mu(w)$.

Theorem 5.Let X be a Smarandache BH-algebra, $w \in X$ and μ is a Q-Smarandache fuzzy strong ideal of X. Then $\uparrow(w)$ is a Q-Smarandachestrong ideal of X.

Proof :Let μ be a Q-Smarandache fuzzy strong ideal of X. To prove that $\uparrow(w)$ is a Q-Smarandache strong ideal of X. 1) Let $x \in \uparrow(w) \Rightarrow \mu(0) \ge \mu(x)$ [By definition 1(i)] $\Rightarrow(0) \ge \mu(w) \Rightarrow 0 \in \uparrow \mu(w)$ 2) Let $x,z \in Q, y \in \uparrow \mu(w)$ and $(x^*y)^*z \in \uparrow \mu(w)$. $\Rightarrow(w) \le \mu(y)$ and $\mu(w) \le \mu((x^*y)^*z)$ $\Rightarrow(w) \le \min\{ \mu(y), \mu((x^*y)^*z) \}$ But $\mu(x^*z) \ge \min\{\mu((x^*y)^*z), \mu(y)\}$ [By definition 1(ii)] $\Rightarrow(w) \le \mu(x^*z) \Rightarrow x^*z \in \uparrow \mu(w)$ $\Rightarrow\uparrow(w)$ is a Q-Smarandache strong ideal of X.

Corollary1.Let X be a Smarandache BH-algebra . Then μ is a Q-Smarandache fuzzy strong ideal of X if and only if μ_t is a Q-Smarandache strong ideal of X, for all $t \in [0, \sup \mu(x)]$

Proof :Let $t \in [0, \sup_{x \in X} \mu(x)]$. To prove that μ_t is a Q-

Smarandache strong ideal of X. Since μ is a Q-Smarandache fuzzy strong ideal of X.

Now, let $y \in \mu_t$ and $x^*(y^*z) \in \mu_t \Rightarrow \mu(y) \ge t$ and $\mu((x^*y)^*z)) \ge t$.

To prove that $x^*z \in \mu_t$

We have $\mu(x^*z) \ge \min\{\mu((x^*y)^*z)), \mu(y)\}$ [By definition 1] Since $((x^*y)^*z)) \ge t$ and $\mu(y) \ge t \Rightarrow \min\{\mu((x^*y)^*z)), \mu(y)\} \ge t$

 $\Rightarrow \mu(x^*z) \ge t \Rightarrow x^*z \in \mu_t$

 $\Rightarrow \mu_t$ is a Q-Smarandache strong ideal of X.

Conversely,

To prove that μ is a Q-Smarandache fuzzy strong ideal of X. Since μ_t is a Q-Smarandache strong ideal of X. Let $t = SUp \mu(x), x, z \in Q$ and $(x^*y)^*z, y \in \mu_t$

x∈X

 $\Rightarrow x^*z \in \mu_t[By \text{ definition9}]$ $\Rightarrow \mu(x^*z) \ge t \Rightarrow \mu(x^*z) = t [Since t = \sup \mu(x)]$

Similarly,((x*y)*z)=t and $\mu(y)=t$ $\Rightarrow t = \min \{((x*y)*z), \mu(y)\}$ $\Rightarrow \mu(x*z) \ge \min \{((x*y)*z), \mu(y)\}$

 $\Rightarrow \mu$ is a Q-Smarandache fuzzy strong ideal of X.

Proposition7 .Let $f : (X, *, 0) \to (Y, *', 0')$ be a Smarandache BH-epimorphism. If μ is a Q-Smarandache fuzzy strong ideal of X, then $f(\mu)$ is a f(Q)-Smarandache fuzzy strong ideal of Y.

Proof :Let μ be a Q-Smarandache fuzzy strong ideal of X. i. Let $y \in f(\mu)$ such that y = f(x). $(f(\mu))(0') = \sup \{\mu(x) \mid x \in f^{-1}(0')\}$ =(0) \ge \mu(x) [By definition 1(i)] =(f(\mu))(f(x)) = (f(\mu))(y) \Rightarrow (f(\mu))(0') \ge (f(\mu))(y)

ii. Let $y_1, y_3 \in f$ (Q), $y_2 \in Y$, there exists $x_1, x_3 \in Q$ and $x_2 \in X$ such that $y_1 = f(x_1), y_3 = f(x_3)$ and $y_2 = f(x_2) \Rightarrow (f(\mu))(y_1 * y_3) = \sup\{\mu(x_1 * x_3) \mid x \in f^{-1}(y_1 * y_3)\}$ ($f(\mu))(y_1 * y_1) \ge (x_1 * x_3) \ge \min\{\mu((x_1 * x_2) * x_3), \mu(x_2)\}$

[By definition 1(ii)]

 $= \min \{ (f(\mu))(f((x_1*x_2)*x_3)) , (f(\mu))(x_2) \} = \min\{(f(\mu))((f(\mu)))(x_2) \} = \min\{(f(\mu))((f(\mu)))(x_2) \} = \min\{(f(\mu))((f(\mu)))(x_2)) \} = \min\{(f(\mu))(x_2)) = \min\{(f(\mu))(x_2)) \} = \min\{(f(\mu))(x_2)) =$

 $(x_1)*'f(x_2)*'f(x_3)),(f(\mu))(f(x_2)) = \min\{(f(\mu))(y_1*'y_2)*'(y_3),(f(\mu))(y_2)\}$

 $\Rightarrow (f(\mu))(y_1) \ge \min \{ (f(\mu))((y_1 *' y_2) *' y_2), (f(\mu))(y_2) \} \\ \Rightarrow f(\mu) \text{ is a } f(Q)\text{-Smarandache fuzzy strong ideal of Y.} \blacksquare$

Theorem 6.Let $f : (X,*,0) \rightarrow (Y, *', 0')$ be a Smarandache BH-epimorphism.Ifvis a Q -Smarandache fuzzy strong ideal of Y, then $f^{-1}(v)$ is $af^{-1}(Q)$ -Smarandache fuzzy strong ideal of X

Proof : i. Let $x \in X$. Since $f(x) \in Y$ and ν is a Q-Smarandachestrong fuzzy ideal of Y.

 $(f^{-1}(v))(0) = v(f(0)) = v(0') \ge v(f(x)) = (f^{-1}(v))(x)$ ii. Let $x \in f^{-1}(Q)$, $y \in X$. $f^{-1}(v)(x^*z) = (f(x^*z))$ [By definition 12] $\ge \min\{v(f(x) *'f(y)) *'f(z)), v(f(y))\}$ [By remark1] $=\min\{v(f(x) *'f(y)) *'f(z)), v(f(y))\}$ [By remark1] $\Rightarrow f^{-1}(v)(x) \ge \min\{f^{-1}(v)((x^*y)^*z), f^{-1}(v)(y)\}$ [By definition1] $\Rightarrow f^{-1}(v)$ is a Q-Smarandache fuzzy strong ideal of X.

Definition 2. Let X be a Smarandache BH-algebra and n be apositive integer. A nonempty subset I of X is called a *Smarandachen-fold strong ideal of X related toQ* (or briefly, *Q*- *Smarandachen-fold strong ideal* of X) if it satisfies: i. $0 \in I$, ii. $\forall y \in I$ and $(x^* y)^* z^n \in I \Rightarrow x^* z \in I$, $\forall x, z \in Q$.

Example 2.Consider the set $I=\{0,3\}$ in example 1 is a Q-Smarandachen-fold strongideal of X.But the set $I=\{0,2,3\}$ is not a Q-Smarandachen-fold strongideal since $(1*3)*0^n = 2 \in I$,but $1*0^n = 1 \notin I$.

Remark 2. Every n-fold strong ideal of a Smarandache BHalgebra X is a Q-Smarandachen-fold strong ideal of X.

Remark3.Every Q-Smarandachen-fold strong ideal of a Smarandache BH-algebra X is a Q-Smarandachestrong ideal of

X.**Remark4.**Every Q-Smarandachen-fold strong ideal of a Smarandache BH-algebra X is a Q-Smarandache ideal of X.

Proposition8. Let X be a Smarandache BH-algebra . Then every Q-Smarandachen-foldstrong ideal which is contained in Q is a Q-Smarandache completely closed ideal of X.

Proof :Let I be a Q-Smarandachen-foldstrong ideal of $X \Rightarrow I$ is a Q-Smarandache ideal of X. [By remark4] Now, let $x,y \in I \Rightarrow x, y \in Q \Rightarrow x^*y \in Q$ [Since $I \subseteq Q$]

Where $((x^*y)^*x)^*0 = ((x^*x)^*y)^*0$ [Since $(x^*y)^*z = (x^*z)^*y$. By definition 1(iii)] =(0*y)*0 [By definition 3(i)] =0*y [By definition 3(ii)] $=0 \in I$ [Since $0 \times x = 0.By$ definition 2(v)] \Rightarrow ((x*y)*x)*0ⁿ \in I and x \in I. \Rightarrow (x*y)*0ⁿ \in I \Rightarrow x*y \in I[By definition 3(ii)] \Rightarrow I is a Q-Smarandache completely closed ideal of X.

Definition 3.A fuzzy subset of a Smarandache BH-algebra Xand n be a

positive integer is called a Q-Smarandache fuzzy n-fold *strong* ideal, iff i. $\mu(0) \ge \mu(x)$) $\forall x \in X$. ii. $\mu(x^*z^n) \ge \min\{\mu\}$ $((x^*y)^*z^n), \mu(y)\}, \forall x, z \in \mathbb{Q}.$

Example3.Consider the fuzzy set μ which is defined by:

 $\mu(\mathbf{x}) = \begin{cases} 0.5 \ \mathbf{x} = 0.2\\ 0.4 \ \mathbf{x} = 1.3 \end{cases}$ is a Q-Smarandache fuzzy n-foldstrong ideal , since: i. $\mu(0) =$ $0.5 \ge \mu(x) \ \forall x \in X, \text{ ii. } \mu(x^*z^1) \ge \min\{ \mu((x^*y)^*z^1), \mu(y)\}, \forall x, \}$ z∈Q.

But the fuzzy set $\mu(x) = \begin{cases} 0.5 \ x = 0.2,3 \\ 0.4 \ x = 1 \end{cases}$

is not a Q-Smarandache fuzzy n-foldstrong ideal since $\mu(1*0^3) = \mu(1) = 0.4 < \min\{\mu(1*3)*0^3), \mu(3)\} = 0.5$

Remark5. Every fuzzy n-fold strong ideal of a Smarandache BH-algebra X is a Q-Smarandache fuzzy n-fold strong ideal of X.

Proposition 9 .Every Q-Smarandache fuzzy n-fold strong ideal of a Smarandache BH-algebra X is a Q-Smarandache fuzzy strong ideal of X.

Proof : Let μ be a Q-Smarandache fuzzy n-fold strong ideal of X .i. Let $x \in X \Rightarrow (0) \ge \mu(x)$.[By definition 3(i)] ii. let $x,z \in Q$ and $y \in X \Rightarrow \mu(x^*z^n) \ge \min\{\mu((x^*y)^*z^n)\}$, $\mu(y)$ [By definition 3(ii)]

When n=1 \Rightarrow $\mu(x^*z) \ge \min\{\mu((x^*y)^*z), \mu(y)\}$

 $\Rightarrow \mu$ is a Q-Smarandache fuzzy strong ideal of X.

Theorem 7. Let $f:(X,*,0) \rightarrow (Y,*',0')$ be a Smarandache BH-epimorphism. If vis a Q-Smarandache fuzzy n-fold strongideal of Y, then $f^{-1}(v)$ is $af^{-1}(Q)$ -Smarandache fuzzy n-fold strongideal of X.

Proof : i.Let $x \in X$. Since $f(x) \in Y$ and ν is a Q-Smarandache fuzzy n-fold strongideal of Y.

 $(f^{-1}(\nu))(0) = \nu(f(0)) = \nu(0') \ge \nu(f(x)) = (f^{-1}(\nu))(x)$ ii. Let $x,z \in f^{-1}(Q), y \in X$. $f^{-1}(\nu)(x^*z^n) = (f(x^*z^n))$ [By definition11] $\geq \min\{\nu(f(\mathbf{x}) \ast' f(\mathbf{y})) \ast' f(\mathbf{z}^n), \nu(f(\mathbf{y}))\}$ [By remark1] $=\min\{\nu(f((\mathbf{x} * \mathbf{y}) * \mathbf{z}^n), \nu(f(\mathbf{y}))\}\$ $\Rightarrow f^{-1}(\nu)(x^*z^n) \ge \min\{f^{-1}(\nu)((x^*y)^*z^n), f^{-1}(\nu)(y)\}$ $\Rightarrow f^{-1}(v)$ is a Q-Smarandache fuzzyn-foldstrong ideal of X.

Theorem 8.Let X be Smarandache BH-algebra. If μ is a fuzzy set such that Q=

 $X_{\mu} = \{x \in X: \mu(x) = \mu(0)\}$ and $\mu(0) \ge \mu(x) \forall x \in X$, then μ is a Q-Smarandache fuzzy n-fold strong ideal of X.

Proof :Let μ be a fuzzy set of X, such that Q = X_{μ} and $\mu(0) \ge \mu(x) \ \forall x \in X.$ i. (0) $\geq \mu(x) \forall x \in X$. ii. Let $x, z \in Q$ and $y \in X$. $\mu(0) \ge \mu((x * y) *$ $(0) \ge \mu(y)$ and $\operatorname{zn}[\operatorname{Since}\mu(0) \ge \mu(x) \forall x \in X]$ $\Rightarrow (0) \ge \min\{\mu((x^*y)^*z^n), \mu(y)\}$ But $\mu(x^*z^n) = \mu(0)$ [Since Q= X_µ] $\Rightarrow \mu(x^*z^n) \ge \min\{\mu((x^*y)^*z^n), \mu(y)\} \Rightarrow \mu$ is a Q-Smarandache

Proposition10.Let { $\mu_{\alpha}: \alpha \in \lambda$ } be a family of Q-Smarandache fuzzy n- fold strongideals of a Smarandache BH-algebra X.

Then
$$\bigcap_{\alpha \in \lambda} \mu_{\alpha}$$
 is a fuzzy n-fold strongideal of X.

fuzzy n- fold strong ideal of X.■

Proof: Let $\{\mu_{\alpha}: \alpha \in \lambda\}$ be a family of Q-Smarandache fuzzy nfoldstrong ideals of X.

i. Let
$$x \in X$$
. $\bigcap_{\alpha \in \lambda} \mu_{\alpha}(0) = \inf\{ \mu_{\alpha}(0), \alpha \in \lambda\} \ge \inf\{ \mu_{\alpha}(x), \alpha \in \lambda \}$

[Since μ_{α} is a Q-Smarandache fuzzy n-foldideal, $\forall \alpha \in \lambda$. By definition 3(i)]

$$= \bigcap_{\alpha \in \lambda} \mu_{\alpha}(\mathbf{x}) \Longrightarrow \bigcap_{\alpha \in \lambda} \mu_{\alpha}(0) \ge \bigcap_{\alpha \in \lambda} \mu_{\alpha}(\mathbf{x})$$

ii. Let $x,z \in Q$ and $y \in X$

$$\bigcap_{\alpha \in \lambda} \mu_{\alpha}(x^* z^n) = \inf\{ \mu_{\alpha}(x^* z^n), \alpha \in \lambda\} \ge \inf\{$$

 $\min\{\mu_{\alpha}((x^*y)^*z^n), \mu_{\alpha}(y)\}, \alpha \in \lambda \}$ [Since μ_{α} is a Q-Smarandache fuzzy n-foldstrong ideal, $\forall \alpha \in \lambda$. By definition3(ii)]= min{ inf{ $\mu_{\alpha}((x^*y)^*z^n), \alpha \in \lambda$ }, inf{ $\mu_{\alpha}(y),$ $\alpha \in \lambda \} \}$

$$= \min\{ \bigcap_{\alpha \in \lambda} \mu_{\alpha} ((x^*y)^*z^n), \bigcap_{\alpha \in \lambda} \mu_{\alpha}(y) \\ \Rightarrow \bigcap_{\alpha \in \lambda} \mu_{\alpha}(x^*z^n) \ge \min\{ \bigcap_{\alpha \in \lambda} \mu_{\alpha}((x^*y)^*z^n), \bigcap_{\alpha \in \lambda} \mu_{\alpha}(y) \} \qquad \Rightarrow$$

 μ_{α} is a Q-Smarandache fuzzy n-foldstrong ideal of X. $\alpha \in \lambda$

Proposition 11.Let { μ_{α} : $\alpha \in \lambda$ } be a chain of Q-Smarandache fuzzy n-fold strongideals of a Smarandache BH-algebra X.

 $\int \mu_{\alpha}$ is a Q-Smarandache fuzzy n-foldstrong ideal of X.

Proof: Let $\{\mu_{\alpha}: \alpha \in \lambda\}$ be a chain of Q-Smarandache fuzzy nfold strongideals of X.

i. Let
$$x \in X$$
. $\bigcup_{\alpha \in \lambda} \mu_{\alpha}$ (0)=sup{ μ_{α} (0), $\alpha \in \lambda$ } \geq sup{ μ_{α}

 $(\mathbf{x}), \alpha \in \lambda$

[Since μ_{α} is a Q-Smarandache fuzzy n-foldstrong ideal, $\forall \alpha \in \lambda$. By definition 3(i)]

Volume 4 Issue 2, February 2015 www.ijsr.net

$$= \bigcup_{\alpha \in \lambda} \mu_{\alpha}(\mathbf{x}) \Rightarrow \bigcup_{\alpha \in \lambda} \mu_{\alpha}(0) \ge \bigcup_{\alpha \in \lambda} \mu_{\alpha}(\mathbf{x}) \ \forall \ \mathbf{x} \in \mathbf{X} .$$

ii. Let $\mathbf{x}, \mathbf{z} \in \mathbf{Q}, \mathbf{y} \in \mathbf{X}$.
$$\bigcup_{\alpha \in \lambda} \mu_{\alpha}(\mathbf{x}^* \mathbf{z}^n) = \sup\{ \mu_{\alpha} \ (\mathbf{x}), \alpha \in \lambda\} \ge \sup\{\min\{\mu_{\alpha}((\mathbf{x}^* \mathbf{y})^* \mathbf{z}^n), \mu_{\alpha}(\mathbf{y})\}, \alpha \in \lambda\}$$

[Since μ_{α} is a Q-Smarandache fuzzy n-foldstrong ideal,

1 1

[Since μ_{α} is a Q-Sinarandache fuzzy fi-foldstrong ideal, $\forall \alpha \in \lambda$. By definition 3(ii)]

But {
$$\alpha, \alpha \in \lambda$$
 } is a chain \Rightarrow there exist, $j \in \lambda$ such that
sup{ $\min\{\mu_{\alpha}((x^*y)^*z^n), \mu_{\alpha}(y)\}, \alpha \in \lambda \} = \min\{\mu_j((x^*y)^*z^n), \mu_j(y)\}$

=min{sup{
$$\mu_{\alpha}((x^*y)^*z^n), \alpha \in \lambda$$
}, sup{ $\mu_{\alpha}(y), \alpha \in \lambda$ }}

$$\Rightarrow \bigcup_{\alpha \in \lambda} \mu_{\alpha}(x^* z^n) \ge \min\{\mu_j((x^* y)^* z^n), \mu_j(y)\}$$

1 1

 $\geq \min\{\sup\{\mu_{\alpha}((x^*y)^*z^n), \alpha \in \lambda\}, \sup\{\mu_{\alpha}(y), \alpha \in \lambda\} = \min\{\mu_{\alpha}(y), \alpha \in \lambda\} = \max\{\mu_{\alpha}(y), \alpha \in \lambda\} = \min\{\mu_{\alpha}(y), \alpha \in \lambda\} = \max\{\mu_{\alpha}(y), \alpha \in$

$$\bigcup_{\alpha \in \lambda} \mu_{\alpha}((x^*y)^*z^n), \bigcup_{\alpha \in \lambda} \mu_{\alpha}(y) \}$$

$$\Rightarrow \bigcup_{\alpha \in \lambda} \mu_{\alpha}(x^*z^n) \ge \min\{ \bigcup_{\alpha \in \lambda} \mu_{\alpha}((x^*y)^*z^n), \bigcup_{\alpha \in \lambda} \mu_{\alpha}(y) \} \Rightarrow$$

$$\bigcup_{\alpha \in \lambda} \mu_{\alpha} \text{ is a Q-Smarandache fuzzy n-fold strong ideal of X.}$$

$$\alpha \in \lambda$$

1 1

References

- A.B.Saeid and A. Namdar, "Smarandache BCHalgebras", World Applied Sciences Journal 7 (11), 1818-4952, pp.77-83, 2009.
- [2] C. H. Park, "Interval-valued Fuzzy Ideal in BHalgebras", Advance in fuzzy set and systems 1(3), pp.231–240, 2006.
- [3] E. M.kim and S.S. Ahn, "On fuzzy n-fold strong ideals of BH-algebras", J. Appl. Math. & Informatics Vol. 30,No.3 – 4, pp. 665 - 676, 2012.
- [4] E. M. kim and S. S. Ahn, "Fuzzy strong ideals of BHalgebras with degrees in the interval (0; 1]", J. Appl. Math. &Informatics Vol. 31, No. 1- 2, pp. 211 – 220, 2013.
- [5] H. H. Abbass, "The Q-Smarandache closed ideal and Q-SmarandacheFuzzy Closed Ideal with Respect to an Element of a Q-Smarandache BCH-Algebra", Journal kerbala university, vol. 10, No.3 scientific, pp. 302-312, 2012.
- [6] H. H. Abbass and S. J. Mohammed "On a Q-Smarandache Fuzzy Completely Closed Ideal with Respect to an Element of a BH-algebra", Kufa University, M.Sc. thesis, 2013.
- [7] L. A. Zadeh, "Fuzzy sets", Information and control ,Vol. 8, PP. 338-353, 1965.
- [8] O. G. Xi, "Fuzzy BCK-algebra", Math. Japonica 36, No. 5, pp.935–942, 1991.
- [9] Q. Zhang, Y. B. Jun and E. H. Roh, "On the branch of BH-algebras", Scientiae MathematicaeJaponicae Online, Vol.4, pp.917-921, 2001.
- [10] Q. Zhang, E. H. Roh and Y. B. Jun, "On Fuzzy BHalgebras", J.Huanggang, Normal Univ. 21(3), pp.14–19, 2001.

- [11] Y. B. Jun, "Closed Fuzzy ideals in BCI-algebras", Math. Japon.ica 38, No. 1, pp.199–202, 1993.
- [12] Y. B. Jun, E. H. Roh and H. S. Kim, "On BH-algebras", Scientiae Mathematicae, 1(1), pp.347–354, 1998.
- [13] Y.B.Jun, "Fuzzy Closed Ideals and Fuzzy filters in BCH-algebras", J. Fuzzy Math. 7, No. 2, pp.435–444, 1999.