
International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 

Volume 4 Issue 2, February 2015 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Software Reliability Growth Model with Varying- 

Time Fault Removal Efficiency As Well As With 

Fault Introduction 
 

D N Gowsami
1
, Anshu Chaturvedi 

2
, Mohammad Altaf Dar

3
 

 

1,3School of Studies in Computer Science & Applications, Jiwaji University, Gwalior (M. P.), India 
 

2Madhav Institute of Technology & Science, Gwalior (M. P.), India 

 

 

Abstract: A large number of software reliability growth models have been proposed to analyze the reliability of software application 

during the testing phase, but none of the software reliability growth model is universal to all situations.However, most of the existing 

software reliability growth models are developed with the assumption that all the faults detected during the testing phase are removed, 

and no new fault is introduced in the debugging process. As far as this assumption is considered, it seems to be unrealistic in practical; 

therefore it is necessary to develop a software reliability growth models with assumption that new faults are introduced when the faults 

in the software system are corrected and removed during testing. This study develops a new software reliability growth model 

incorporating both fault removal efficiency as well as fault introduction. The study considered the sense that new faults can be 

introduced into the software during debugging and the detected faults may not be removed completely. The fault removal is not a simple 

process, because detected faults would be ambiguous to find and also consumes a lot of time to remove them successfully and also a 

numbers of procedures are involved. The procedures involved during the removal process are fault observation, fault position and fault 

modification. The applicability of proposed model is shown by validating it on software failure data sets obtained from different real 

software development projects. The comparisons with established models in terms of goodness of fit, the Akaike Information Criterion 

(AIC), Sum of Squared Errors (SSE), etc. have been presented. The proposed model is compared with the growth models available in the 

literature, and was found encouraging.  

 

Keywords: Software Reliability Growth Models, faults, testing 

 

1. Introduction 
 

With the increasing demand of technology and complexity 

of the software system, the assurance of software quality 

becomes an essential concern. Reliability is one, and 

probably the most important aspect of the software quality. 

It usually depends on the correctness of the mapping of the 

system design to implementation. Thus the reliability of 

software is defined as the probability of failure free 

operation for a specified period of time in a specified 

environment [1]. Form early 90’s, over 200 software 

reliability growth models have been developed to analyze 

the reliability of the software system but none of them is 

universal to all circumstances. Most of the existing software 

reliability growth models are developed on the assumptions 

that during the removal process, no new fault is introduced. 

From the practical point of view this assumption is not 

acceptable. It is known that most of the software engineers 

have experienced of introducing different faults in correcting 

a fault [2]. The study considered the sense that new faults 

can be introduced into the software during debugging and 

the detected faults may not be removed completely. There 

are many software reliability growth models available in the 

literature for example Goel-Okumoto [3], S-shaped model 

[4], PNZ- model [5] Ohba [6], Yamada, Ohba and Osaki [7], 

Zhao and Xie [8], Pham [9] and Yang [10] proposed 

NHPPbased Software Reliability Growth Models. 

 

These models are developed on various assumptions, one of 

the common assumption is that all faults detected are 

corrected and removed, and no new fault is introduced. In 

fact, this is not true in practical point of view; however there 

is a chance of introducing different faults in correcting a 

fault.  

 

2. Demonstration of Growth Model 
 

2.1 Notation Used During Study 

 

N(t) : Total number of faults at [0,t] 

m(t) : Number of failures by time  t. 

a : Initial faults content in the software 

b : Fault detection rate 

R(t) : Fault removal function 

β(t) : Fault introducing function 

ω(t) : Number of faults detected 

 

2.2 Assumptions 

 

1. Total number of faults detected N(t) follows  Poisson 

Distribution 

2. Failure rate is a function of remaining and detected faults 

in the software 

3. New faults are introduced when the faults in the software 

are corrected and removed 

The assumption first is widely used follows Poisson 

Distribution with parameters m(t), can be written as follows:  

P( N(t)=n ) = 
m(t)n

𝑛 !
exp (-m(t))  --1 

Where n = 0,1,2 … 

 By considering the above assumptions, the 

proposed model is described as follows 
𝑑  𝑚 (𝑡)

𝑑𝑡
 = b ( a(t)- ω(t) )  --2 

Paper ID: SUB151528 1681



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 

Volume 4 Issue 2, February 2015 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

𝑑  ω(𝑡)

𝑑𝑡
 = R (t) 

𝑑  𝑚(𝑡)

𝑑𝑡
  --3 

𝑑  𝑎(𝑡)

𝑑𝑡
= β(t)

𝑑  𝑚(𝑡)

𝑑𝑡
  --4 

 

Where ω(t) is the total number of faults detected and 

removed successfully, m(t) represents the total number of 

faults, R(t) is the fault removed function and  β(t) represents  

the  fault introducing function. The initial conditions for the 

differential equations (2), (3) and (4) are: 

m(0) = 0    --5 

ω(0) = 0    --6 

a(0) = 0    --7 

Hence, the total number of faults detected and removed by 

the time t is shown in following equation: 

ω(t) = a(t) – a exp  𝑏  (β λ − R(λ))𝑑λ
𝑡

0
 d t --8 

Now, the expected number of faults can be obtained as 

m(t) =  𝑒𝑥𝑝
𝑡

0
 𝑏  (β λ − R(λ))𝑑λ

𝑣

0
 𝑑𝑣 --9 

 

Model with Varying-Time Fault Removal As 

Well As Fault Introduction 
 

So far as fault removal is considered, it is not a simple 

process, as it involves a series of procedures to remove 

them. The procedures used to remove the faults in the 

software are: 

(i) Fault Observation 

(ii) Fault Position 

(iii) Fault Modification 

 

Daniel [11] assumes the expected time to remove a fault is 𝛾 

time units. Sometimes the value of 𝛾 is known due to the 

previous releases and other software products. Once the fault 

is observed, the expected number of subsequent occurrences 

before it is removed is 𝛾 b. Therefore fault removal 

efficiency can be written as:  
1

𝑅
= (1 + 𝛾 b)  --10 

 

As far as the faults that are detected later, would be 

ambiguous to find and consume a lot of time to remove. 

However, the fault removal efficiency decreases with testing 

time. Fault removal efficiency is assumed to be the function 

of time and can be written as follows: 

(1+Ct)             --11 

and C denotes how quickly the fault removal time can 

change. Then the expected number of subsequent 

occurrences of fault before it can be removed is 

𝛾b(1+Ct)          --12 

Therefore, the fault removal efficiency R(t) becomes: 
1

𝑅(𝑡)
= 1 + 𝛾 b(1 + Ct) or  

 R(t)= 
1

1+𝛾  b(1+Ct )
  --13 

Similarly fault introducing function β(t) can be written as 

follows: 

β(t)=β 
1

1+𝛾  b(1+Ct )
  --14 

Substituting eq.13 and 14 in 8 and 9, we have: 

m(t) =
𝑎(1+𝛾  b)

β+𝛾  C−1
  1 +

𝛾Cbt

1+𝛾b
 

β−1

𝛾  C
−1

− 1  --15 

 

 

 

4. Applications 
 

In this section, applicability of the proposed model is shown 

by validating it on software failure data set obtained from 

different real software development projects. The datasets 

derived from different time-periods are illustrative of 

industrial software processes prevalent in that period. The 

procedure is as follows: 

 

First, we fit the proposed model into the data i.e., parameter 

estimation, and obtain mean value function m(t). Secondly, 

the proposed model is compared with the existing models 

available in literature within a dataset using the SSE and 

AIC. 

 

5. Parameter Estimation  
 

To support the model applicability both the parameter 

estimation and model validation are the necessary aspects. 

The mathematical equation of the proposed SRGM is non-

linear. Nevertheless, it is hard to discover the answer for a 

nonlinear model using Least Square Method and requires 

numerical algorithm to resolve it. To overcome this problem 

we use Statistical Software Package such as SPSS. SPSS is a 

statistical package for social sciences. To estimate the 

parameters of the proposed model, a Least Square method 

(Non-linear regression method) is used. Non-linear 

regression method finds the relationship between the 

dependent and independent variable. Non-linear regression 

can estimate models with arbitrary relationships between 

autonomous and dependent variable 

 

5.1. Goodness of Fit 

 

The term goodness of fit is used in two different contexts, in 

one context it denotes the question if sample of information 

comes from a population with a specific distribution. In 

another context it denotes the question of “How good does 

mathematical model fit to the data.” 

 

5.2. Sum of Squared Errors (SSE) 

 

The SSE is a mathematical approach to determining the 

scattering of data points; found by squaring the length 

between each data point and the line of best fit and then 

summing all of the squares.The sum of the squared errors, 

SSE, is defined as follows: 

SSE =  (𝑁
𝑖=1  Y𝑖- Ŷ𝑖) 2   --16 

Where: 

Y𝑖 is the actual observations time series 

Ŷ𝑖 is the estimated or forecasted time series 

 

5.3. Akaike Information Criterion (AIC)  

 

It is defined as AIC = -2(The value of the maximum log 

likelihood function) + 2(The number of the parameters used 

in the model).This index takes into account both the 

statistical goodness of fit and the number of parameters that 

are estimated. Lower values of AIC indicate the preferred 

model 

 

 

Paper ID: SUB151528 1682



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 

Volume 4 Issue 2, February 2015 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

5.4. Model Validation 

 

To validate as well to determine the software reliability 

growth of a proposed model, it has been tried out on two 

testing datasets, which are documented in [12] [13] 

respectively. The proposed model has been compared with 

the NHPP of Goel Okumoto [3], S-Shaped [4]. The results 

are shown in tables below. After observing the goodness-of 

fit, the values of SSE and AIC are smaller than the values of 

other models. The Graph of observed values and estimated 

values for the datasets are illustrated in Fig. 1-2. Overall, the 

proposed model perform better. 

 

Table 1: Based on the testing dataset document in [12] 
Model SSE AIC 

Goel Okumoto ≅7.7*103 ≅4.0*102
 

S-Shaped ≅5.2*104 ≅5.5*102
 

Proposed ≅4.3*103 ≅3.9*102 

 

Table 2: Based on the testing dataset document in [13] 
Model SSE AIC 

Goel Okumoto ≅2.5*101 ≅7.9*101
 

S-Shaped ≅2.1*101 ≅8.5*101
 

Proposed ≅2.0*101 ≅7.2*101 

 
Figure 1: ObservedEstimated Cumulative Failures 

Curves DS-I 

 
Figure 2: Observed And Estimated Cumulative Failures 

Curves DS-II 

 

6. Conclusion 
 

This paper considered the sense that new faults can be 

introduced into the software during debugging and the 

detected faults may not be removed completely. The fault 

removal is a complex process, because detected faults would 

be ambiguous to find, consumes a lot of time, and also a 

numbers of procedures are involved to remove to remove 

them. The proposed model were validated on two different 

datasets and are also compared with existing models in the 

literature base on SSE and AIC. From the comparative study 

it has been concluded the proposed model performs better 

than the other Software Reliability Growth Models. 

References 
 

[1] Musa "A Theory of Software Reliability and Its 

Application," IEEE Trans. on Soft. Eng., pp 312-327, 

1975 

[2] Yamada, Tokuno and Osaki, “imperfect debugging 

models with fault introduction rate for software 

reliability assessment,” International Journal of system 

software, pp. 2241-2252, 1992 

[3] Goel and Okumoto, “Time-dependent error-detection 

rate model for software reliability and other 

performance measures,” IEEE Transactions on 

Reliability, pp. 206–211, 1979. 

[4] Yamada, Ohba, Oask, “S-shaped software reliability 

growth model for software detection,” IEEE 

Transaction. On Reliability, pp 475-478, 1986. 

[5] Pham, Nordmann and Zhang, “A general imperfect 

software debugging with S-shaped fault detection 

rate”IEEE Transactions on Reliability, pp. 169-175, 

1999. 

[6] Ohba, Osaki, and Hatoyama “Inflection S-shaped 

software reliability growth model, in Stochastic Models 

in Reliability Theory”, Springer-Verlag, pp. 144-165, 

1984. 

[7] Yamada, Ohba, and Osaki, “S-shaped reliability growth 

modeling for software error detection,” IEEE 

Transactions on Reliability, pp. 475-478, 1983. 

[8] Zhao and Xie, “On maximum likelihood estimation for 

a general non-homogeneous Poisson process,” 

Scandinavian Journal of Statistics, pp. 597--607, 1996. 

[9] Pham and Zhang, “An NHPP software reliability 

models and its comparison,” International Journal of 

Reliability Quality Safety Engineering, pp. 269-282, 

1997. 

[10] Yang, Sang and Lei, “An Improved NHPP Model with 

Time-Varying Fault Removal Delay,” Journal of 

Electronic Science and Technology of China, pp. 334-

337, 2008 

[11] Daniel, Zhang and Pham, “Accounting for realities 

when estimating the field failure rate of software,” in 

Pro. Of the 12
th

 International Symposium on software 

Reliability Engineering, pp. 332-339, 2001. 

[12] Zhang, Teng, and Pham, “ Considering fault removal 

efficiency in software reliability assessment,” IEEE 

Transaction on System Man and Cybernetics Part A: 

System and Humans, pp. 114-119, 2003 

[13] Ehrlich, Prasanna, Stampfel and Wu, “Determining the 

cost of a stop-testing decision,” IEEE Software, pp. 33-

42, 1993 

Paper ID: SUB151528 1683




