
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 2, February 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Distributive Arithmetic Formulation For An

Optimized Adaptive Filter Design

Ashly Babu
1
, Ajeesh A.V.

2

1P G Scholar, VLSI and Embedded Systems, Department of ECE, T K M Institute of Technology, Kollam, India

2Assistant Professor, Department of ECE, T K M Institute of Technology, Kollam, India

Abstract: Distributed arithmetic (DA) is commonly used for signal processing algorithms where calculating the inner product of two

vectors comprises most of the computational workload. An important signal processing area is adaptive filtering. Adaptive filtering is

extensively used in several signal processing applications including signal de-noising, and channel equalization for communication and

networking systems. But, DA has its issues also. The main problem here is the updating of the memory table. Several methods have

been adopted to accelerate memory updating, but it had led to additional memory usage and convergence speed. Hence it is necessary to

develop structures for an adaptive DA filter with the maximum reduction of these disadvantages. Various methods can be adopted to

achieve this result. One among them is parallel lookup table (LUT) update and concurrent implementation of filtering and weight-

update operations. The DA-based inner-product computation can be done by conditional signed carry-save accumulation instead of

conventional adder-based shift accumulation and a fast bit clock for carry-save accumulation but a much slower clock for all other

operations can also be adopted. The coding of each module is simulated and synthesized using the Xilinx ISE Design Suite 12.1 and

ISim Simulator.

Keywords: Adaptive filter, distributed arithmetic (DA), least mean square (LMS) algorithm, Finite Impulse Response(FIR), Field

Programmable Gate Array(FPGA).

1. Introduction

LMS based adaptive filters are preferred for most of the DSP

applications. When we are doing the direct form

configuration of the filters it leads to long critical path

because of the inner-product computation to get the filter

output[1]. Hence for high sampling rate, the critical path of

structure should not exceed the sampling period. So, we go

for Distributed Arithmetic (DA).

DA is basically a bit serial computational operation that

forms an inner (dot) product of a pair of vectors in a single

direct step. The advantage of DA is its efficiency of

mechanization. One of the major disadvantages of it is the

slowness because of its bit serial nature [2]. This

disadvantage is not real if the number of elements in each

vector is in proportion with the number of bits in each vector

element. For example the time required to input eight 8-bit

words one at a time in a parallel fashion is exactly the same

as the time required to input all eight words serially. Other

modifications to increase the speed can be done by

employing techniques such as bit pairing or partitioning the

input words into the most significant half and least significant

half ,the least significant half of the most significant half,

etc.,thereby introducing parallelism in the computation.

Another major disadvantage is the large memory requirement

[3]. So when it comes to employ filters with high sampling

rate it becomes a serious issue.

Various methods can be adopted to avoid these

disadvantages .One among them is parallel lookup table

(LUT) update and concurrent implementation of filtering and

weight-update operations. The DA-based inner-product

computation can be done by conditional signed carry-save

accumulation [8] instead of conventional adder-based shift

accumulation. A fast bit clock for carry-save accumulation

but a much slower clock for all other operations can also be

adopted. The coding can be synthesized by the Xilinx ISE

Design Suite 12.1, simulated using ISim simulator and can be

implemented using Spartan 3E FPGA

2. Theory

2.1. Adaptive FIR Filter

An adaptive filter is a filter that adjusts its transfer function

all by itself according to an adaptive algorithm. This is based

on the error signal produced which is the difference between

the desired output of the filter and the actual output of the

filter. Most adaptive filters are digital filters due to the

complexity of the optimization algorithm. A non-adaptive

filter has a fixed transfer function. Adaptive filters are

necessary for some appliances because some parameters of

the desired processing operation are not known in advance.

The adaptive filter uses feedback in the form of an error

signal to improve its transfer function to match the varying

parameters.

Due to increase in the power of digital signal processors,

adaptive filters have become much more common and are

now regularly used in devices such as mobile phones and

other communication devices, digital cameras, and medical

monitoring equipment.

Paper ID: SUB151499 1397

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 2, February 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 1: Adaptive FIR Filter Structure

 The block diagram, shown above, is an example of a

foundation for particular adaptive filter realizations, such as

Least Mean Squares (LMS).The block diagram here indicates

that a variable filter can be made to extract an estimate of the

desired signal.

2.2. Least Mean Square (LMS) Algorithm

The LMS algorithm is an adaptive algorithm which adapts

the coefficients of FIR filters iteratively. The following steps

are followed to find out the coefficients of an adaptive FIR

filter:

1. Calculate the output signal y(n) of the FIR filter

T

(1)

Where,

 is the filter input vector and
T

 is the filter coefficients vector and

]
T

2. Calculate the error signal e(n) by using the following

equation:

 e(n) = d(n)–y(n) (2)

Where,

 d(n) is the desired output

 y(n) is the filter output

2.3. Distributed Arithmetic

DA is a multiplier-less implementation process .It can be

used to compute the inner-product of a pair of vectors which

is a common computation method used in digital signal

processing. They are most suitable for implementing high

throughput FIR filters. A is a bit-serial computation. It forms

an inner product of a pair of vectors in a few steps by storing

all possible combination sums of weights in a memory table.

The advantage of DA is its efficiency of mechanization. The

output y is given as the sum of delayed and scaled input

samples x[k].

 (3)

Where,

 is the fixed coefficients

 is the input data words

Also,

 (4)

Where,

 are the bits 0 or1

 is the sign bit

Substituting (4) in (3) ;

 (5)

In-order to produce an distributed form, the order of

summations are interchanged.

 (6)

Hence the output is computed as

 (7)

3. Methodology

 Distributed Arithmetic (DA) is a different methodology for

implementing digital filters. The basic idea of this method is

to use a DA table and a shifter accumulator as a substitute for

all multiplications and additions. DA is a bit-serial

computational operation which allows digital filters to be

implemented with high throughput rates, despite of the filter

length.

3.1 System Overview

The basic block diagram for the design of an Adaptive FIR

Filter using Distributive Arithmetic is as shown below in

figure 2.

Figure 2: DA-based LMS Adaptive Filter

Paper ID: SUB151499 1398

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 2, February 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The main parts of the block diagram are as follows:

1. Four-Point Inner product block, having;

 Distributed Arithmetic table

 16-to-1 MUX

 Carry Save Accumulator

2. Sign- Magnitude Separator

3. Control Word Generator

4. Weight-Increment Block, having;

 Barrel shifters

 Adder/subtractor blocks

3.2 Four-Point Inner product block

The initial part of the filtering process of the LMS adaptive

filter, for each cycle, is the need to perform an inner-product

computation. This is the task that contributes to most of the

critical path. The block diagram of four-point inner product

block is as shown in figure 3.

Figure 3: Four-point inner product block

3.2.1. DA Table

It forms the initial part of the 4-point inner product block,

such that it consists of an array of 15 registers. They are used

for the purpose of storage of partial inner products y. The

structure of the DA table is as shown in figure 4.

Figure 4: DA Table

3.2.2. 16-to-1 MUX

It is used to select the contents of the registers of the DA

table. For the MUX the bit slices of weights A= {

 } are fed as control or select lines to draw the

contents of the DA table. The control here is in the LSB-to-

MSB order. And then the output of it fed to the carry save

accumulator.

3.2.3. Carry Save Accumulator:

The process of shift accumulation is done in the CSA block.

The input of the block is from the 16-to-1 MUX. The bit

slices are fed one after the other in the order LSB-to- MSB to

the CSA block. For MSB slices, negative of LUT output

accumulation is very much necessary, so the LUT output is

passed through XOR gates and sign control input. Hence,

when MSB slice occurs the XOR gate produce 1‟s

complement as the sign control bit is set to 1. And then the

sum and carry are obtained after L clock cycles. The

structure of carry-save accumulator is as shown in figure 5.

Figure 5: Carry-Save Accumulator

3.3. Weight Increment block

It forms one of the important parts of the filter design

structure. The production of the weight for the updating of

four-point inner product block is done by the weight

increment block. The block diagram of weight increment

block is as shown in figure 6.

Figure 6: Weight Increment block

3.3.1. Barrel Shifter

A barrel shifter is a digital circuit that can shift a data word

by a specified number of bits in one clock cycle. The control

word ‟t‟ for the working of the BS is produced by decoding

the magnitude of error. This error that is decomposed is the

difference between the desired output of the filter and the

actual output produced by the filter. The logic for the

Paper ID: SUB151499 1399

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 2, February 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

selection for the control-word 't' for the BS is given in the

table below.

if r6=1 then t = “000”;

else if r5 = 1 then t = “001”;

else if r4 = 1 then t = “010”;

else if r3 = 1 then t = “011”;

else if r2 = 1 then t = “100”;

else if r1 = 1 then t = “101”;

else if r0 = 1 then t = “110”;

else then t = “111”

3.3.2. Adder/subtractor block:

In adder/subtractor is a digital circuit that is capable of

adding or subtracting numbers. The circuit does the adding or

subtracting process depending on a control signal. When

Sign Bit = „0‟, the circuit perform addition and when Sign Bit

= „1‟ the circuit perform subtraction.

3.4. Flowchart

The flowchart explaining the whole filtering process is shown

in the Figure 7.

Figure 7: Flow chart describing the process

3.5. Algorithm

The algorithm that briefly explains the process that happens

inside the block diagram for the design of the adaptive FIR

filter using Distributed Arithmetic is as follows:

Step 1: The input of four-point inner product block is 8-bit

samples.

Step 2: The four-point inner-product block includes DA

Table, 16:1 Multiplexer and Carry Save Accumulation block.

Step 3: The DA table consist of an array of 15 registers

which stores the partial inner products.

Step 4: It is connected to 16:1 MUX, so that the output of

DA table is fed to the MUX.

Step 5: Weights A= { } are fed to the MUX

as control or selection input to select any one of the inputs

from those 16 inputs (i.e.; the output of the MUX).

Step 6: The output of the MUX is then fed to the Carry Save

Accumulator.

Step 7: The carry-save accumulator shift accumulates all the

partial inner products.

Step 8: The output of CSA block is Sum and Carry bits.

Step 9: It is then shifted and added to generate filter output

y(n).

Step 10: Filter output is subsequently subtracted from the

desired output d(n) to obtain the error e(n).

Step 11: The magnitude of the computed error is decoded to

generate the control word t for the barrel shifters

Step 12: In weight increment block, the barrel shifters yields

the desired increments that have to be fed to the

adder/subtractor block.

Step 13: The sign bit of the error signal is used as the control

signal for adder/subtractor block.

Step 14: The 8-bit output from the adder/subtractor block is

fed to the parallel bit to serial nibble converter to convert it

into 4-bit, which is then fed to the inner product block to

complete the filtering process.

4. Results and Discussion

The filter design process has the following blocks like four-

point inner product block, sign-magnitude separator, control

word generator and weight-increment block. Initially the

coding for the individual block was completed and then all

the modules were combined by using the structural modeling.

Simulation is carried out using Xilinx ISim simulator and

then synthesis is done using Xilinx ISE 12.1.

Figure 8: Adaptive FIR Filtering using DA

 The simulation result of the Adaptive FIR Filtering using

DA is shown in Figure 8 .A DA table was used instead of

LUTs for the calculation of the partial-inner products. One of

the contents of the table was then selected using a multiplexer

and input to a carry save accumulator block. The output

produced was subtracted from a desired signal to obtain the

error. It was then decomposed to obtain the control and sign

signals to run the weight increment block that is there to

adjust weight so as to get the output similar to the desired

signal.

Paper ID: SUB151499 1400

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 2, February 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

5. Conclusion

For an adaptive FIR filter, the contents of the memory table

must be updated regardless of the filter coefficients or input

samples present. So an efficient method for fully updating a

memory table that is composed of the combinations of the

input samples and that is addressed by concatenating bits of

the filter coefficients need to be developed. So that it is able

to support high sampling rate.

Distributive Arithmetic (DA) is one such method. While

comparing DA with other alternative methods it was

observed that they require fewer arithmetic computing

resources and also no multipliers. This concept of distributed

arithmetic is the most favored one for computing

environments with limited computational resources. The

method used had their disadvantages too. They needed

additional memory usage and convergence speed. So it‟s

necessary to develop structures for an adaptive DA filter with

the maximum reduction of these disadvantages. Various

methods like usage of auxiliary LUTs, parallel look up

tables, concurrent implementation of the filtering and weight

updating operations, replacement of the adder-based shift

accumulation by conditional signed carry-save accumulation

were adopted.

An Adaptive FIR Filter using Distributed Arithmetic has a lot

of applications. The main ones among them are noise

cancellation and channel equalization. Adaptive noise

cancellation is one of the best approaches that can be used

for the purpose of separating the additive noise from the

corrupted speech. These applications can be implemented on

FPGAs.

References

[1] P. K. Meher and S. Y. Park, “Low-Power, High-

Throughput, and Low-Area Adaptive FIR Filter Based

on Distributed Arithmetic” IEEE Transactions On

Circuits And Systems VOL. 60, NO. 6, JUNE 2013.

[2] S. Haykin and B.Widrow,Least-Mean-Square Adaptive

Filters. Hoboken, NJ, USA: Wiley, 2003.

[3] S. A. White,”Applications of the distributed arithmetic

to digital signal processing: A tutorial review” IEEE

ASSP Mag. vol. 6, no. 3,Jul. 1989.

[4] D. J. Allred, H. Yoo, V. Krishnan, W. Huang, and D. V.

Anderson, ”LMS adaptive filters using distributed

arithmetic for high throughput” IEEE Trans. Circuits

Syst.I, Reg. Papers, vol. 52, no. 7,Jul. 2005.

[5] Walter G. Huang,”Thesis on Implementation of

Adaptive Digital Fir and Reprogrammable Mixed-Signal

Filters Using Distributed Arithmetic”.School of

Electrical and Computer Engineering Georgia Institute

of Technology December 2009.

[6] R. Guo and L. S. DeBrunner, ”Two high-performance

adaptive filter implementation schemes using distributed

arithmetic” IEEE Trans. Circuits Syst. II, Exp. Briefs,

vol. 58, no. 9, Sep. 2011.

[7] R. Guo and L. S. DeBrunner, ”A novel adaptive filter

implementation scheme using distributed arithmetic” in

Proc. Asilomar Conf. Signals, Syst., Comput., Nov. 2011

[8] P. K. Meher and S. Y. Park,”High-throughput pipelined

realization of adaptive FIR filter based on distributed

arithmetic” in VLSI Symp. Tech. Dig., Oct. 2011.

[9] M. D. Meyer and P. Agrawal,”A modular pipelined

implementation of a delayed LMS transversal adaptive

filter”

in Proc. IEEE Int. Symp. Circuits Syst., vol. 9, no.3,

August 2013.

[10] Aarti Sharma, “Report on VLSI Implementation Of

Pipelined FIR Filter”.Thapar University Patiala.

Paper ID: SUB151499 1401

