Common Fixed Point Theorem for Eight Mappings in Menger Space Using Rational Inequality Without Continuity

Naval Singh¹, Dilip Kumar Gupta²

¹Department of Mathematics, Govt. Science & Commerce College, Benazeer Bhopal (M.P.) India
²Department of Mathematics, People’s College of Research & Technology Bhopal (M.P.) India

Abstract: In this paper we establish Common fixed point theorem for eight mappings in Menger space using the notion of compatibility including rational term without continuity.

Keywords: Menger space, Weak compatibility, Common fixed point.

1. Introduction

Menger space, Weak compatibility, Common fixed point.

2. Preliminaries

Definition 2.1: A probabilistic metric space (PM-space) is an ordered pair (X,F) consisting of a nonempty set X and a function F: X x X -> L, where L is the collection of all distribution functions and the value of F at (u,v) ∈ X x X is represented by F_{u,v}. The function F_{u,v} is assumed to satisfy the following conditions:

(PM-1) F_{u,v}(x) = 1, for all x>0 if and only if u = v

(PM-2) F_{u,v}(0) = 0;

(PM-3) F_{u,v} = F_{v,u};

(PM-4) F_{u,v}(x) = 1 and F_{v,w}(y) = 1 then F_{u,w}(x+y) = 1 for all u,v,w ∈ X and x,y > 0.

Definition 2.2: A mapping t:[0,1] x [0,1] -> [0,1] is called a t-norm if

(a) t(a, 1) = a, t(0, 0) = 0
(b) t(a,b) = t(b,a) (symmetric property)
(c) t(c,d) = t(a,b) for c ≥ a, d ≥ b
(d) t(t(a,b), c) = t(a, t(b, c))

Definition 2.3: A Menger space is a triplet (X,F,t) where (X,F) is a PM-space and t is a t-norm such that the inequality:

F_{u,w}(x+y) ≥ t { F_{u,v}(x), F_{v,w}(y) } for all u,v,w ∈ X and x,y > 0

Definition 2.4: Let {x_n} be a sequence in a Menger space (X,F,t) with continuous t-norm and t(x,x) ≥ x. Suppose for all xe[0,1] there exists kε(0,1) such that for all x>0 and nεN

F_{x_n,x_n+1}(x) ≥ F_{x_{n-1},x_n}(x).

Then {x_n} is a Cauchy sequence in X.

Lemma 1: Let {x_n} be a sequence in a Menger space (X,F,t) with continuous t-norm and t(x,x) ≥ x. Suppose for all xe[0,1] there exists kε(0,1) such that for all x>0 and nεN

F_{x_n,x_{n+1}}(x) ≥ F_{x_{n-1},x_n}(x).

Then {x_n} is a Cauchy sequence in X.

Lemma 2: Let (X,F,t) be a Menger space. If there exists kε(0,1) such that for p,qεX

F_{p,q}(x) ≥ F_{p,q}(x).

Then p=q

In 2006, Bijendra Singh and shishir jain [9] introduced fixed point theorems in Menger space through semi-compatibility and gave the following fixed point theorem for six mappings:

Theorem: Let A,B,S,T,L and M are self mappings on a complete Menger space (X,F,min) satisfying:

(a) L(X) ⊆ ST(X), M(X) ⊆ AB(X)
(b) AB = BA, ST = TS, LB = BL, MT = TM
(c) Either AB or L is continuous.
(d) (L, AB) is semi-compatible and (M, ST) is weak compatible.

(e) There exists kε(0,1) such that
3. Main Results

Theorem (3.1): Let A, B, S, T, L, M and Q be self-mappings on a complete Menger space (X, F, t). Let the functions satisfying:

(3.1.1) \(A(X) \subseteq ST(X) \cap L(X) \cap M(X), B(X) \subseteq PQ(X) \).

(3.1.2) \(PQ = QP, ST = TS, AQ = QA, BT = TB, LT = TL, MT = TM. \)

Let such that \(x_{2n} = TX_{2n+1} = LX_{2n+1} = MX_{2n+1} = y_{2n+1} = BX_{2n+1} = PQX_{2n+2} \) for \(n = 0, 1, 2, \ldots \)

putting \(x = x_{2n} \) and \(y = y_{2n+1} \) for \(x > 0 \) in 3.1.4 then we have

\[
F_{A_{x_{2n}}, B_{x_{2n+1}}} (Kt) \leq \min \{ F_{PQ_{x_{2n}}, L_{x_{2n+1}}} (t), F_{ST_{x_{2n+1}}, L_{x_{2n+1}}} (at), F_{B_{x_{2n+1}}, PQ_{x_{2n+2}}} ((2 - \alpha)t), \]

\[
\left(F_{F_{x_{2n}}, L_{x_{2n+1}}} (t), F_{A_{x_{2n+1}}, PQ_{x_{2n+2}}} ((2 - \alpha)t), \right)\].

Hence

\[
F_{y_{2n}, y_{2n+1}} (Kt) \geq \min \{ F_{y_{2n-1}, y_{2n}} (at), F_{y_{2n}, y_{2n+1}} (at), F_{y_{2n+1}, y_{2n}} (t), F_{y_{2n+1}, y_{2n+2}} (t)\}
\]

Let \(t \in (0, 1) \) and put \(\beta = 1 - \alpha \) we get

\[
F_{y_{2n}, y_{2n+1}} (Kt) \geq \min \{ F_{y_{2n-1}, y_{2n}} (at), F_{y_{2n}, y_{2n+1}} (at), F_{y_{2n+1}, y_{2n}} (t), F_{y_{2n+1}, y_{2n+2}} (t)\}
\]

Making \(\beta \rightarrow 1 \), we get

\[
F_{y_{2n}, y_{2n+1}} (Kt) \geq \min \{ F_{y_{2n-1}, y_{2n}} (t), F_{y_{2n}, y_{2n+1}} (t), F_{y_{2n+1}, y_{2n+2}} (t)\}
\]

Similarly, \(F_{y_{2n+1}, y_{2n+2}} (Kt) \geq \min \{ F_{y_{2n+1}, y_{2n+2}} (t), F_{y_{2n+2}, y_{2n+3}} (t)\} \)

Therefore for all \(n \) even or odd we have

\[
F_{y_{n}, y_{n+1}} (Kt) \geq \min \{ F_{y_{n-1}, y_{n}} (t), F_{y_{n+1}, y_{n+2}} (t)\}
\]

Consequently, it follows that for \(p = 1, 2, 3, \ldots \)

\[
F_{y_{n}, y_{n+1}} (Kt) \geq \min \{ F_{y_{n-1}, y_{n}} (t), F_{y_{n+1}, y_{n+2}} (t)\}
\]

By noting that \(F_{y_{n}, y_{n+1}} (t) \rightarrow 1 \) as \(n \rightarrow \infty \) it follows that

\[
F_{y_{n}, y_{n+1}} (Kt) \geq \min \{ F_{y_{n-1}, y_{n}} (t) \}
\]

Hence by Lemma (1), \(\{ y_{n} \} \) is a Cauchy sequence in \(X \). Now suppose \(PQ(X) \) is complete. Note that the subsequence \(\{ y_{2n+1} \} \) is contained in \(PQ(X) \) call it \(z \). Let \(u \in PQ^{-1} (z) \) then \(PQu = z \). we shall use the fact that subsequence \(\{ y_{2n+1} \} \) also converges to \(z \).

\[
\text{Taking } n \rightarrow \infty \text{we get}
\]

\[
F_{Au, z} (Kt) \geq \min \{ F_{x, z} (t), F_{x, z} (t), F_{z, z} (t), \}
\]

Thus we have

\[
F_{Au, z} (Kt) \geq F_{Au, z} (t)
\]

Therefore by Lemma 2 we have \(Au = z \). since \(PQu = z \) thus we have \(Au = PQu = z \) that is \(u \) is common point of \(A \) and \(PQ \) this proves 3.1.5 (a).

Since \(A(X) \subseteq ST(X) \cap L(X) \cap M(X), Au = z \) implies that \(ST(X) \cap L(X) \cap M(X) \). Then \(STv = Lv = Mv = z \). By putting \(x = x_{2n+2} \) and \(y = v \) with \(\alpha = 1 \) in 3.1.4

\[
\text{Since } A(X) \subseteq ST(X) \cap L(X) \cap M(X), Au = z \text{ implies that } ST(X) \cap L(X) \cap M(X). \text{ Then } STv = Lv = Mv = z. \text{ By putting } x = x_{2n+2} \text{ and } y = v \text{ with } \alpha = 1 \text{ in } 3.1.4
\]
\(F_{Ax_{2n+2,Btn}}(Kt) \geq \min \{ F_{PQ_{2n+2,LP}}(t), F_{ST_{2n+2,LP}}(t), F_{BT_{2n+2,LP}}(t), F_{Az,PR_{2n+2,LP}}(t), F_{Az,PR_{2n+2,LP}}(t), F_{Az,PR_{2n+2,LP}}(t) \} \).

Taking \(n \to \infty \) we get
\(F_{Az,Btn}(Kt) \geq \min \{ F_{z,x}(t), F_{x,z}(t), F_{PR_{z,x}}(t), F_{PR_{x,z}}(t), F_{Az,PR_{z,x}}(t), F_{Az,PR_{x,z}}(t) \} \).

Thus we have
\(F_{z,Btn}(Kt) \geq F_{z,Btn}(t) \). Therefore by Lemma (2) we have
\(Bz = z \) since \(STv = Lv = Mt = z \) thus we have \(Bv = STv = Lv = Mt = z \) that is v is coincident point of B and ST, L, M. This proves (b).

The remaining two cases pertain essentially to the previous cases. Indeed if A(X) or B(X) is complete then by 3.1.5 \(z \in A(X) \cap ST(X) \cap M(X) \) or \(z \in B(X) \cap PQ(X) \). Thus 3.1.5 (a) and (b) are completely established. Since the pair \{A, PQ\} is weakly compatible therefore A and PQ commute at their coincidence point that is \(A(PQz) = (PQ/Au = Az = PQz) \).

Since the pair \{B, ST\}, \{L, ST\} and \{L, M\} are weakly compatible therefore
\(B(STv) = ST(Bv) = z \) and \(Lv = Lv = Mt = z \) that is v is coincident point of B and ST, L, M. Therefore By putting \(x = x_{2n+2} \) and \(y = z \) with \(z = 1 \) in 3.1.4

\(F_{Ax_{2n+2,Btn}}(Kt) \geq \min \{ F_{PQ_{2n+2,LP}}(t), F_{ST_{2n+2,LP}}(t), F_{PR_{PQ_{2n+2,LP}}(t)}, F_{Az,PR_{2n+2,LP}}(t) \} \).

Taking \(n \to \infty \) we get
\(F_{Az,Btn}(Kt) \geq \min \{ F_{z,x}(t), F_{x,z}(t), F_{PR_{z,x}}(t), F_{PR_{x,z}}(t), F_{Az,PR_{z,x}}(t), F_{Az,PR_{x,z}}(t) \} \).

Thus we have
\(F_{z,Btn}(Kt) \geq F_{z,Btn}(t) \). Therefore by Lemma (2) we have \(Bz = z \) since \(Bz = STz = Lz = Mz = z \).

By putting \(x = x_{2n+2} \) and \(y = z \) with \(z = 1 \) in 3.1.4

\(F_{Ax_{2n+2,Btn}}(Kt) \geq \min \{ F_{PQ_{2n+2,LP}}(t), F_{ST_{2n+2,LP}}(t), F_{PR_{PQ_{2n+2,LP}}(t)}, F_{Az,PR_{2n+2,LP}}(t) \} \).

Taking \(n \to \infty \) we get
\(F_{Az,Btn}(Kt) \geq \min \{ F_{z,x}(t), F_{x,z}(t), F_{PR_{z,x}}(t), F_{PR_{x,z}}(t), F_{Az,PR_{z,x}}(t), F_{Az,PR_{x,z}}(t) \} \).

Thus we have
\(F_{z,Btn}(Kt) \geq F_{z,Btn}(t) \). Therefore by Lemma 2 we have \(Tz = z \) since \(STtz = z \) therefore \(Sz = z \).

By putting \(x = x_{2n+2} \) and \(y = z \) with \(z = 1 \) in 3.1.4

\(F_{Az,Btn}(Kt) \geq \min \{ F_{PQ_{2n+2,LP}}(t), F_{ST_{2n+2,LP}}(t), F_{PR_{PQ_{2n+2,LP}}(t)}, F_{Az,PR_{2n+2,LP}}(t) \} \).

As \(AQ = QA, PQ = QP \) we have
\(AQ = QA, PQ = QP \).

\(F_{z,x}(Kt) \geq \min \{ F_{z,x}(t), F_{z,x}(t), F_{Qz,x}(t), F_{Qz,x}(t), F_{Az,Qz,x}(t), F_{Az,Qz,x}(t) \} \).

Thus we have
\(F_{z,Btn}(Kt) \geq F_{z,Btn}(t) \). Therefore by Lemma (2) we have \(Qz = z \). Since \(PQz = z \) therefore \(Pz = z \). By combining the above results we have \(Az = Bz = Lz = Mz = Sz = Tz = Pz = Qz = z \). That is z is a common fixed point of A, B, L, M, S, T, P and Q.

Uniqueness: Let \(z' \neq z' \) be another common fixed point of A, B, L, M, S, T, P and Q, then \(Az' = Bz' = Lz' = Mz' = Sz' = Tz' = Pz' = Qz' = z' \).

By putting \(x = z \) and \(y = z' \) with \(z = 1 \) in 3.1.4 we have
\[F_{Ax,Bz}(Kt) \geq \min \{ F_{PQz,Lz}(t), F_{STx,Lx}(t), F_{Az,PQz}(t), \left(\frac{F_{PQz,STx}(t) \cdot F_{Az,PQz}(t)}{F_{PQz,STx}(t) \cdot F_{Az,Lx}(t)} \right) \}. \]

Corollary 3.1.6: Let \(A, S, T, L, M, P \) and \(Q \) are self mappings on a complete Menger space \((X, F, t)\) satisfying:

(1) \(A(X) \subseteq ST(X) \cap L(X) \cap M(X), A(X) \subseteq PQ(X) \).

(2) \(PQ = QP, ST = TS, AQ = QA, AT = TA, LT = TL, MT = TM. \)

(3) \((A, PQ), (L, ST), (A, ST), (L, M)\) are weak compatible.

(4) There exists \(k \in (0, 1) \) such that

\[F_{Ax,Ay}(Kt) \geq \min \{ F_{PQz,ly}(t), F_{STy,ly}(t), \left(\frac{F_{PQz,STy}(t) \cdot F_{Ax,My}(t)}{F_{PQz,STy}(t) \cdot F_{Ax,ly}(t)} \right) \}. \]

For all \(x, y \in X, \alpha \in (0, 1) \) and \(t > 0 \).

(5). If one of \(A(X), ST(X), PQ(X) \) is a complete sub space of \(X \), then:

(a) \(A \) and \(PQ \) have a coincidence point.

(b) \(A \) and \(ST, L, M \) have a coincidence point.

Then self – maps \(A, S, T, L, M, P \) and \(Q \) have a unique common fixed point in \(X \).

References

