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Abstract: Spherically symmetrical cosmological models are examined in the presence of Brans Dicke theory of gravity with anisotropy 

dark energy. We use the power law relation between scalar field and scalar factor to find the solution. Exact solutions of Einstein’s field 

equations are obtained by assuming a special law of variation for the Hubble parameter, which yields a constant value of the 

deceleration parameter. Geometric and kinematic properties of the models and the behaviour of the dark energy have been carried out. 
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1. Introduction 

 
One of the most successful attempt to resolve the problems 

of standard Big Bang cosmology such as homogeneity, 

isotropy, and flatness of the universe is the inflationary 

paradigm, characterised by an epoch of accelerated 

expansion, ”inflation”, in the very early universe [1–4]. 

During the inflationary epoch, quantum fluctuations are 

highly amplified, their wavelengths are stretched to outside 

the Hubble horizon and inevitably, superhorizon fluctuations 

are generated. These fluctuations become classical after 

crossing the event horizon and are coherent on what appear 

to be superhorizon scales at decoupling [5–14]. After the end 

of inflation, they re-enter the horizon, and seed the matter 

and the radiation fluctuations observed in the universe. 

These primordial fluctuations are Gaussian, adiabatic and 

nearly scale-invariant in the majority of inflation models and 

even a slight deviation from these properties can strongly 

constrain the assumptions in cosmological models [13,14]. 

  

A spatially ellipsoidal geometry of the universe can be 

described with Bianchi type metrics. However, Bianchi type 

I, V, VII models isotropize at late times even for ordinary 

matter and the possible anisotropy of the Bianchi metrics 

necessarily dies away during the inflationary era [15,16]. In 

fact this isotropization of the Bianchi metrics is due to the 

implicit assumption that the Dark energy (DE) is isotropic in 

nature. If the implicit assumption that the pressure of the DE 

is direction independent is relaxed, the isotropization of the 

Bianchi metrics can be fine tuned to generate arbitrary 

ellipsoidality (eccentricity). Therefore, the cosmic 

microwave background (CMB) anisotropy can also be fine 

tuned, since the Bianchi universe anisotropies determine the 

CMB anisotropies. The price of this property of DE is a 

violation of the null energy condition (NEC) since the DE 

crosses the Phantom Divide Line (PDL), in particular 

depending on the direction [17]. 

 

Recently, Rodrigues [17] and Koivisto & Mota [18,19] have 

investigated cosmological models with anisotropic equation 

of state (EoS). Rodrigues has constructed a Bianchi type-I ^-

dominated cold dark matter (^-CDM) cosmological model 

with a DE component which is non dynamical but yields 

anisotropic vacuum pressure in two ways: (i) by 

implementing of anisotropic vacuum pressure consistent 

with energy-momentum tensor conservation; (ii) by 

implementing a Poisson structure deformation between 

canonical momenta such that rescaling of the scale factor is 

not violated [17]. He suggests to fine tune the DE so as to 

not wipe out the anisotropic imprints in the inflationary 

epoch. On the other hand, Koivisto & Mota have proposed a 

different approach to resolve CMB anisotropy problem; 

even if the CMB formed isotropically at early time, it could 

be distorted by the direction dependent acceleration of the 

later universe in such a way that it appears to us anomalous 

at the largest scales. They have investigated a cosmological 

model containing a DE component which has a non-

dynamical anisotropic EoS and interacts with the perfect 

fluid component. They have also suggested that 

cosmological models with anisotropic EoS can explain the 

quadrupole problem and can be tested by SNIa data [18,19]. 

 

Recently, Mota et al. [20] have concluded that even though a 

perfect fluid representation might ultimately turn out to be a 

phenomenologically sufficient description of all the 

observational consequences of DE, imperfectness in DE 

cannot be excluded . Although there is compelling evidence 

that the expansion of universe is speeding up, we are far 

from understanding of the nature of the DE which is thought 

be the reason for this behaviour [21-23]. Hence, we should 

examine models with anisotropic dark energy, in order to 

determine what possible new physical consequences they 

might give rise to, and if for no other reason than to rule 

such models out. 

 

The experimental data [24-26] about late time acceleration 

expansion of the universe has attracted much attention in the 

recent years. Cosmic acceleration can be well explained 

from high red- shift supernova experiments. The results 

from cosmic microwave background fluctuation [27] and 

large scale structure [28] suggest the expansion of universe. 

Dark energy is the most popular way to explain the 

observation that the universe is expanding at an acceleration 

rate. The exact nature of the dark energy is a matter of 

speculation. It is known to interact through any of the 
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fundamental forces other than gravity.. Since it is not very 

dense, roughly 10-29 grams per cubic centimetre, so it is not 

difficult task to detect it in the laboratory. It is thought that 

dark energy have a strong negative pressure in order to 

explain the observed acceleration in the expansion rate of 

the universe. 

 

Dark energy models have significant importance now as far 

as theoretical study of the universe is concerned. It would be 

interesting to study the variable equation of state (EoS), i.e. 

)(tP   , where P is the pressure and   is the energy 

density of universe. Usually EoS parameter is assumed to be 

a constant with the values 1
3

1
,0,1  and  for 

vacuum, dust, radiation and stiff matter dominated universe, 

respectively. However, it is a function of time or redshift 

[29] in general. 

 

The isotropic models are considered to be most suitable to 

study large scale structure of the universe. However, it is 

believed that the early universe may not have been exactly 

uniform. This prediction motivates us to describe the early 

stages of the universe with models having anisotropic 

background. Thus, it would be worthwhile to explore 

anisotropic dark energy models in the context of modified 

theories of gravity. Among the various modifications of 

general relativity (GR), Brans- Dicke (BD) theory of gravity 

[30] is a well known example of a scalar tensor theory in 

which the gravitational interaction involves a scalar field and 

the metric tensor. One extra parameter ϖ is used in this 

theory which satisfies the equation given by  






23

8




T
, 

Where   is known as BD scalar field while T is the trace of 

the matter energy- momentum tensor. It is mentioned here 

that the general relativity is recovered in the limiting case 

 . Thus we can compare our results with 

experimental tests for significantly large value of  . 

 

Recently Prandha and Amirhashchi [31] investigated 

anisotropic dark energy Bianchi type III model with variable 

EoS parameter in GR. Kumar and Singh [32] explored 

perfect fluid solution using Bianchi type I space-time in 

scalar- tensor theory. 

 

In this paper, we have discussed the solutions of anisotropic 

dark energy spherically symmetric cosmological model in 

the presence of Brans- Dicke theory of gravitation. We find 

the solutions using the assumption of constant deceleration 

parameter and law relation between   and R.  

 

2. Models and Field Equations 
 

The line element for the spatially homogenous and 

anisotropic Spherically symmetric space time is given by 
222222  dbdradtds              (1) 

 

where a and b are function of t only. The energy momentum 

tensor for anisotropic dark energy is given by 

 ],,,1[],,,[ zyxzyxj
i diagppppdiaT   (2) 

where   is the energy density of the fluid while 

zyx ppp ,,  are the pressures on the zyx ,,  respectively.  

Here   is EoS parameter of the fluid with no deviation and 

zyx  ,,  are the EoS parameters in the directions of x,y 

and z axes respectively.  

 

The energy momentum tensor can be parameterized as 

 )](),(,,1[  diagT j
i

            (3) 

For the simplification, we choose  x  and the 

skewness parameter   is the deviations from   on y and  

z axes respectively.  

The Brans- Dicke field equations are 

 










 ij

ijij

k

kijjiijj
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T
ggRgR

8
,

1
),

2

1
,,(

2

1 ,

2
  (4) 

And 






23

8,

;



Tk

k                           (5) 

 where  is a dimensionless coupling constant.  

For the line element (1), the field equations (4) leads to the 

following system  

of equation  
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(8)  

Using equation (5), we get 

)23(

)231(8
2












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b

b

a

a 
         (9)  

The physical quantities that are of importance in cosmology 

are expansion scalar   and shear scalar 
2  and have the 

following expression for the metric 

 b

b

a

a 
2

                              (10)

 

2

2

3

2












a

a

b

b 
                          (11) 

The average scale factor R and the volume scale factor V  
are defined  

 
233 2 , abRVabR 

 (12) 

The generalized mean Hubble parameter H is given in the 

form 

 321
3

1

3

1
HHH

V

V

R

R
H 


 (13) 
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The directional Hubble parameters in the directions of x, y 

and z respectively may be defined as  

b

b
HH

a

a
H


 321 ;                        (14)  

 

3. Solution of the Field Equations 
 

Integration after subtracting equation (8) and (7) , we get 
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 (15) 

where   is an integration constant. The integral term in 

above equation vanishes for  

28 b


                                  (16) 

Using equation (16) in equation (15), it follows that 









  dt

R
c

a

b




32 exp                       (17) 

Where 
23 abR   and 2c  is an integration constant. Here 

we use the power law assumption to solve the integral part 

in the above equations . The power law relation between 

scale factor R 

 

And scalar field   has already been used by Johri and 

Desikan [33] in the context of Robertson Walker Brans- 

Dicke models. Thus the power law relation between 

Rand  is 
mR , where m is any integer, implies 

that 
mBR                                      (18) 

where B is the constant of proportionality. The deceleration 

parameter q in cosmology is the measure of the cosmic 

acceleration of the universe expansion and is defined as 

 
2R

RR
q






                                    

 (19) 

It is mentioned here that q was supposed to be positive 

initially but recent observations from the supernova 

experiments suggest that it is negative. Thus the behaviour 

of the universe models depend upon the sign of q . The 

positive deceleration parameter corresponds to a 

decelerating model while the negative value provides 

inflation. We also use a well – known relation[34] between 

the average Hubble parameter H and average scale factor R 

given as 
nlRH                                    (20) 

where 00  nandl . This is an important relation 

because it gives the constant value of the deceleration 

parameter. From equation (13) and (20), we get 
1 nlRR                                (21) 

Using this value, we find that deceleration parameter is 

constant i.e. 1 nq . Integrating equation (21), it follows 

that 

nknltR

1

1)(   , 0n                   (22) 

And 0,)exp(2  nltkR
         

 (23) 

where 21 kandk  are constants of integration. Here we 

obtain two values of the average scale factor that correspond 

to two different models of the universe. 

 

I) Dark Energy Model of the Universe when 0n  and 

2m  

Now we discuss the model of universe when 0n  i. e. 

nknltR

1

1)(  . For this model,   becomes 
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2
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
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Using this value of   in equation (17) ,we get 
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The directional Hubble parameter )3,2,1( iH i  take the 

form 

       
nknltB
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l
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1
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
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The mean generalized Hubble parameter becomes 

1knlt

l
H




                                

 (29) 

While the volume scale factor turns out to be 

nknltV

3

1)( 
                           

 (30) 

The expansion scalar   and shear scalar   take the form 

1

3

knlt

l


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 (31) 
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                        (32) 

 The anisotropy parameter of the expansion   is defined as 
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H
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where iH  )3,2,1( i  represents the directional Hubble 

parameters in the directions of x, y and z respectively. By 

using (27) (28) (29) in (33) we get 

  nknlt
B

2
2
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2

9

2 




                        

 (34) 

Using equations(7) to (9) , we obtained 
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In this case the EoS parameter   becomes 
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II) Dark Energy Model of the Universe when 

20  mandn   

The average scale factor for this model of the universe is 
ltekR 2  and hence   takes the form 

)2exp(
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Using this value of   in equation (17), we get the following 

exact expressions for the scale factors 
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The directional Hubble parameters as defined in (14) are 

found as 
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 From the equations (12) and (13), the mean generalised 

Hubble parameter and the volume scale factor becomes 
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The expansion scalar   and shear scalar   are found as 
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The mean anisotropy parameter   for this model yields 
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For this model , equations(7) to (9) becomes 
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In this case the EoS parameter   becomes 
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4. Conclusion 

 
In this paper we have discussed the spherically symmetric 

cosmological models in Brans Dicke theory of gravitation in 

the background of anisotropic dark energy. The assumption 

of constant deceleration parameter leads to two models of 

universe . 

First we discussed power law model of the universe. This 

model corresponds to 0n  with average scale factor 

nknltR

1

1)(  .It has a point singularity at 
nl

k
t 1 . 

The physical parameters HandHHH 32,1 ,  are infinite 

at this point but here the spatial volume vanishes. The metric 

function a, and b vanish at 
nl

k
t 1  Thus , it is concluded 

from these observations that the model starts its expansion 

with zero volume at 
nl

k
t 1  and it continues to expand 

for 10  n .  

The exponential model of the universe corresponds to 

0n  with average scale factor ).exp(2 ltkR   It is non-

singular because exponential function is never zero and 

hence there does not exist any physical singularity for this 

model. The Hubble parameters 32,1 , HHH are all finite 

values of t. The mean generalized Hubble parameter H is 

constant while metric functions a,b do not vanish for this 

model. The volume scale factor increases exponentially with 

time which indicates that the universe starts its expansion 

with zero volume from infinite past 

The isotropy condition, 00
2

 tas



 in both cases. 

The variable EoS parameter   has a positive value at 

0t  which indicated that the universe was matter 

dominated in its early phase of its existence. At t , 

0  which indicate that the pressure of the universe 

vanishes . 
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