
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 2, February 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

A Secure Multilayer Honeypot in an E-Commerce
Web Application

Gaurav Beriwal

1
, Anuj Garg

2
, Ravinder Jangra

3

1Department of Computer Science, U.I.E.T. M.D. University, Rohtak, India

2Department of Computer Science, U.I.E.T. M.D. University, Rohtak, India

3Department of Computer Science, U.I.E.T. M.D. University, Rohtak, India

Abstract: E-commerce web applications are on a verge of not providing fair chance to all the consumers. E-commerce can be unfair

especially in case of the check-out process as when many business trading corp. are vying for the limited supply item. Web applications

security is more of a continuous plight as hackers and crackers are busy being creative avoiding/bypassing the many defensive tools to

regulate security. The actuality is that the e-commerce application security is breached when some unethical corp. apply pre-formatted

spiders or scripts to place orders. This gives them a very unjust advantage. Thus to rule out the problem i.e. to eliminate spiders/scripts

in web applications by using a solution which is impractical to crack with no extra actions by the end user, this paper introduces an very

innovative multilayer access to honeypots. This way is technically non-practical to crash or bypass proving secured web application

forms.

Keywords: Honeypot, e-Commerce, Security, Threat, Web Applications, Eliminate Spiders, CSS.

1. Introduction

In computer terminology, a honeypot is a trap set to detect,
deflect, or, in some manner, counteract attempts at
unauthorized use of information systems. Generally, a
honeypot consists of a computer, data, or a network site that
appears to be part of a network, but is actually isolated and
monitored, and which seems to contain information or a
resource of value to attackers. This is similar to the police
baiting a criminal and then conducting undercover
surveillance. Honeypots are run to gather information about
the motives and tactics of the Blackhat hacking community
targeting different networks. These honeypots do not add
direct value to a specific organization; instead, they are used
to research the threats organizations face and to learn how to
better protect against those threats. Research honeypots are
complex to deploy and maintain, capture extensive
information, and are used primarily by research, military, or
government organizations. If an attacker attempts to hack an
application it is taken away by a honeypot instead, then
information regarding IP address of the hacker can be traced.
This can be further used to know the source of the attacker.

This paper represents the basis of the existent security
solutions and will present a proposed solution. This is due to
the ineffectiveness or limitation of the methods to remove
malicious spiders and scripts, and to cease bots. Our paper
explains the prescribed computer architecture for the
proposed methodological analysis. This paper also describes
the solution implementation and its effectiveness and
necessity in the modern-era.

2. Form Honeypot

A present solution is using Form Honeypots. It is based on a
concept in which a fixed, one or multiple invisible fields are
present substituting as a honeypot which are dwelt by the
spider, and the server logic is only capable to identify the

spider using the backend and back-checking the value of
those fields.

This existing honeypot is not giving a good amount of
protection from the bots with brute forces, etc. This honeypot
solution seems a good value of investment in reducing the
hack attempts but this solution is fiddling and is prone to be
hacked given the experienced hackers and advances in
scanner codes. The hackers simply are able to bring down
this method of one-dimensional honeypot approach as they
forge a simple analysis of request/response of a valid form to
recognize the expected fields by the server. Forging this hit
and try method, the security of honeypots can be well-off
defused therefore not providing the essential security against
threats.

3. Proposed Solution

The basis of thought of this proposed solution is to create a
two-dimensional honeypot solution. The very basic idea is a
special path of differentiating between actual human
involvement and a pseudo intervention. This differentiation
would be done on a realm of computer technology which
requires utilization of network connections and performance
of various tasks using automated systems. This proposed
solution comprises of the concept to limit the bot from
recognizing a honeypot. This analytical method requires
actual human involvement as the automated agent or bot
would fall for the honeypots as it won‟t be able to recognize
the valid form and the corresponding fields to it.

By using this two-dimensional method of honeypots the
spiders forming a library of fields would be reckoning
impossible as each and every field and form will have a
different ID every time the page is reloaded.

3.1 Working

The proposed solution is shown in figure 1. Here we change

Paper ID: SUB151278 769

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 2, February 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

the previous concept of honeypot take it to the next level
making it impractical to hack.

Figure 1: Existing vs. Proposed solution

In a web application, a) Every page on generation has
multiple copies of the form, with slight differences of unique
identifying hash, timestamp and many more; b) All forms are
hidden through CSS; c) Once the page is submitted, a
JavaScript application function retrieve the data from the
server checking for the valid one; d) The rendered valid form
is made visible altering its CSS.

It is undetectable by a spider or scanner as upon rendering of
the page, the number and order of honeypots and the forms
respectively are ever going to change. Observing the figure 2,
we have two layer honeypot. There are many number of
honeypot forms with the same field number and type as in the
original form, the field names here are added randomly so as
to make sure that the spider or bot is unable to save the valid
field name to reassign it. Then further the server can only
differentiate between the field names as to which is original
human intervened and another identifying as a bot field or
form making it very effective.

Figure 2: Solution Details
4. Solution Architecture

This type of architecture, as shown in figure 3, requires two
main engines described below:-
a) Form Builder Engine
b) Form Manager Engine

Form Builder Engine is used to build similar honeypot forms
as to the original one. Form Manager Engine is utilized for
the management process and to add randomness in the forms
and fields. It maps the forms and fields and stores the
relevant information in the database so as when the form is
sent through the validation engine it is able to decode using
form/field ID.

This process is done to facilitate the identification of the
original form and it‟s representing fields. This secure system
is forged by shuffling the original and honeypot forms
altogether in a random order. It is second dimensional as the
original form itself is shuffled in honey pot fields. Each and
every form and field is given a unique ID. When the page is
reloaded, the order of IDs is always changed randomly.

Figure 3: Solution Architecture

4.1 Solution Implementation

This can be a very interesting idea to implement as it is
almost impractical to hack as the spiders are ever going to be
confused between an original and a honeypot. If field Type
attribute is used as hidden then it may give a very clear
indication to the bot of what not to fill which ultimately will
leave it unsecured defeating the sole purpose of security.

Paper ID: SUB151278 770

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 2, February 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 4: Field Type Attributes

Instead we should use manipulating Cascaded Style Sheets
(CSS), so as the spider or scanner is unable to build a serial
history of the events that took place making it largely secure.
Using CSS manipulation and display attribute, the user end,
if it‟s a human will only be able to fill the fields coded with
„display: block‟ and won‟t be able to see the fields coded
„display: none‟.

But the trick is that the bot will see both. Making it practical
to fall for it and we can be notified of it and can trace it back.
As in the figure 4, only the bottom field is visible at user end
but the automated script won‟t differentiate in this and will
fill any field coded as type „text‟ giving an indication of and
spider/bot filler of form.

Figure 5: Simple honeypot example

The figure 5 depicts an old honeypot structure, the proposed
two-dimensional honeypot structure includes: - a) Dynamic
form ID and field ID; b) Display attributes usage within CSS
file; c) Dynamic class ID within CSS. These above three
items when together used makes it nearly impossible for the
automated script or bot to detect a honeypot, instead is ever-
ready to back-trace it.

Each and every form will have different IDs which are
randomly assigned upon the loading of page. When the page
is reloaded every form will have new dynamic name and IDs

making it impractical for the spider to store its history of the
page layout.

Figure 6: Sample form honeypot (first dimensional)

In the figure 6, there are four forms with different names out
of which three are honeypots. It is second dimensional as the
dynamics of randomness that applies on form IDs, further
applies to the field, class and div IDs too; the total added
randomness of these IDs ensures a very high level of security
which is untraceable by the bots.

Figure 7: Two dimensional honeypot implementation as

seen by the browser

Paper ID: SUB151278 771

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 2, February 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 8: Second dimensional honeypots with further field names

It has typical honeypot fields but is hidden from the front
user-end and is shown to the bots only through CSS, as
shown in figure 7. Its implementation would have a page with
many similar forms covered by CSS in which the honeypots
are hidden to the front end. The source of such type of page
using two dimensional honeypot forms would have multiple
identical form with only a single valid form. As in figure 8,
the original form is ID 01500, but it further includes
honeypots in the second dimensional with a field „meden
name‟.

5. Solution Security

The major difference is that in this proposed solution most of
the fields are honey pot fields, even those which were the
original in a pre-request. Example, in the first request#1, the
form#4 was the original one then on re-rendering of the page on
the second request#2, the form#6 would be the original one.
Statistically, the automated script/ spider have a very substantial
chance of getting into the wrong fields. Rechecking this
proposed solution, by passing it via a security scanning tool
would create a „no error‟ remark under a scanner. It is since that
the scanner is a type of smart form reader with complicated test
policies, would not distinguish honey pots as a black-box
scanner it is. Brute force attack, which is considered very
effective by the hackers would also be impractical to use as the
hacker won‟t be knowing the location of the valid form.

Even if in the rarest cases the attacker is able to distinguish
the original form then since it is a two-dimensional security
the hacker won‟t be able to differentiate within the honey pot
fields in the form.

6. Conclusion

It will help web applications to have multiple honey pots

with random form and field IDs making it extremely difficult
for the bot to check the valid one as the IDs are randomly
generated every time the page is reloaded disabling it to keep
a history of events. Therefore allowing only the front-end
user to see the right form and enter the right fields. A
governance server module that maps the forms and fields
with random IDs would only be able to differentiate between
the valid fields and honeypots. In this proposed solution the
bot/spiders should not supply with the incorrect solution and
only a single correct one in field would be accepted. This
focuses not only on security of web applications but as well
as also tracing back the bot efficiently.

Its intent is to avail seamless work flow in which the user
doesn‟t require to write any CAPTCHA word or field to
prove that he is human, rather the protection from the
automated scripts and spiders is catered in the back-scene.
We try to make honeypots almost impossible to detect due to
their complicated two-dimensional systems.

7. Acknowledgement

The authors wish to thank Ravi Shankar and Kartik Mudgal.

References

[1] IBM. Method and system to generate human knowledge
based CAPTCHA. IP.com number:
IPCOM000l84977D, July, 2009

[2] K. Elissa, “Title of paper if known,” unpublished. The
Government of the Hong Kong Special Administrative
Region,
http://www.infosec.gov.hk/english/technical/files/honeyp
ot s.pdf.

[3] Bronstein A,NAME, U.S. Patent, 7,841,940 issued, Nov
30, 2010

Paper ID: SUB151278 772

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 2, February 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[4] Pratte et al., „Method And Apparatus Eor Network
Authentication Oe Human Interaction And User
Identity‟, U.S.
Patent, 20,080,216,163 issued, Sep 4, 2008.

[5] Osborn et al., „Graphical Image Authentication And
Security System‟, U.S. Patent, 20,090,077,653 issued,
March 19, 2009.

[6] Carter et al., „Method, System And Computer Program
Product For Access Control‟, U.S. Patent,
20,070,124,595 issued, May 31, 2007.

[7] Mates J, „Generatinga Challenge Response Image
Including A Recognizable Image‟, U.S. Patent,
20,090,313,694 issued, Dec 17, 2009.

[8] Carter et al., ‘Method, System And Computer

Program Product For Access Control’, U.S.
Patent, 20,070,124,595 issued, May 31, 2007.

[9] Mates J, ‘Generatinga Challenge Response Image

ncluding A Recognizable Image’, U.S. Patent,
20,090,313,694 issued, Dec 17, 2009.

Paper ID: SUB151278 773

