
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 2, February 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Business Rule Inclusion and Legacy

Modernization through Binary Instrumentation

Prasenjit Kundu
1
, Dr. B. K. Ratha

2

1Research Scholar, Utkal University, Bhubaneswar, India

2Reader, Dept. of CSA, Utkal University, Bhubaneswar, India

Abstract: Business rule is essential for decision making, events, and process activities. It is used to capture knowledge and develop

business systems’ requirements. Frequent changing scenarios in different aspects of business, demands corresponding runtime addition

or modification of such logics to enterprise‘s legacy system without disturbing their normal executions, functions and nature. This is

difficult from reverse engineering point of view as redesigning such system with added features may not be cost-effective, reliable and

feasible in all circumstances. One of the promising approaches to do so is plug in instrumentation. In this paper, we discuss the object

code based aspects of dynamic binary instrumentation to add new business logics to organisation’s legacy system at runtime without

disturbing operational tasks .We also discuss the merit and demerit of such plug-in.

Keywords: Business Rule, Reverse Engineering, Instrumentation.

1. Introduction

Legacy system contained different business logics buried

inside them in unstructured and scattered manner. Modern

changing scenario of business fertility demands frequent

changes in their business logics running on their software

system without hampering routine business tasks. This is

complex as such legacy modernization not only requires

extracting existing logics from system but also required

effective techniques to merge and attach new logics in

existing system. Legacy modernization is a costly, complex

and incremental development process which requires

migrating towards new technology, platforms and features.

The main aim of such modernization is to retain the value of

the legacy asset on the new platform and to better

adaptability through identify and change the rules in the

runtime. These aids reverse engineering. Different tools and

techniques has proposed by different researchers over

decades including Instrumentation, which involves adding

extra code to a software system for monitoring some program

behaviour, statically (i.e., at compile time) or dynamically

(i.e., at runtime). In this paper we focused on how new

enterprises logics at runtime can be embedded in legacy

system using dynamic analysis to make them future ready.

2. Literature Survey

Olegas Vasilecas [1] described Business rules as an

important and integral part of information system by

expressing business logic, constraints of concepts, and their

interpretation and relationships. Hence, it is needed to pay

special attention to business rules in development of

information systems. Anis Charfi [2] applied the divide and

conquer principle to web service composition by explicitly

separating business rules from the process specification.

Nicholas Zsifkov [3] says Enterprise business rules are

usually defined as constraints or as metadata about business

operations: on the business side, business rules are special

policies that define constraints/metadata about the business

operation; on the information system (implementation) side,

business rules are constraints about the data, about data

manipulation and about system processes. E. Putrycz [4]

highlighted in his paper how such legacy system and business

rule can be connected together which serving as a basis of

many researches in this domain. Legacy system contains

numerous such business critical rules embedded within them

which are essential for routine business operations and

critical decision making. But these rules are difficult to

separate from running system as there are gap between initial

design documentation to the current executable program as

those program gone through several evaluation cycle over

time. Program analysis is one of the techniques to diagnoses

a program either at compile time (called Static program

analysis) or at runtime (called dynamic program analysis) to

visualize the business logics embedded in those programs

using graphical means. Tarja [5] described the way to

analyzing object oriented program by combining metrics and

program visualization techniques. In last several years

different program analysis techniques had been proposed by

researchers for better understanding, verification the program

and to extract enterprise logics extractions from such

information systems. But modern dynamic business world

demands not only to extracts previous rules from their legacy

system but also ways to integrate new business critical logics

with existing rules for better business processing. This is a

real challenge to add new business policies with existing

rules at runtime without disturbing routine operations of such

software system.

One of the promising alternatives of achieving this is

program instrumentation. Torsten Kempf [6] defined

instrumentation as adding extra code to an application for

monitoring some program behaviour, can be performed

Paper ID: SUB151262 814

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 2, February 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 1:

either statically or dynamically .Instrumentation [7]

techniques already shown various avenues in the study of

runtime program analysis ,verification and debugging.

3. Existing System and Motivation of Our

Work

In most of the existing system the Business Rules can be

extract/add only during the inert time period .Further, very

few researches actually adapted dynamic binary

instrumentation for doing the same. So the main aim of this

paper to provide Business Rules that can be add at Run Time

through dynamic binary plug-in.

4. Our Approach

We proposed both conceptual and empirical level approach

for effectively insert new enterprise based business logics

through a separate instrumentation program executable into

the existing runtime software system without altering the

execution trace of existing system. We divide this section

into two parts. In part five, we discuss the conceptual

framework of our approach and in part six, we proposed how

and where the actual new business rules plug-in will be insert

so that new plug-in rules will be integrate with the existing

rules at runtime. We take a C-code based example to validate

our approach on GNU gcc compiler for windows.

5. Conceptual Approach

Legacy systems requires many aspects of business decisions

to be enforce at different time with changing scenario of

enterprises business policies. But redesigning such system is

complex and costly. Hence, the only promising way to do so

is reverse engineering [12, 13] based runtime analysis of such

software system and addition of separate logic module(s)

with existing runtime executable of the system to make them

cope with present industry demands. We propose a

framework as shown in figure1 which will integrate the

complied executable of newly created business logic module

with the existing executable software system through plug-in

instrumentation. (Ref. Fig.1)

The existing information system and the new business rule

based module must be complied and assembled separately by

our propose framework to generate separate „object files‟.

Then all such object files along with library files are passes

as a parameter to linker which will generate the compiled and

integrate executables as we claim above.

When a program comprises multiple object files like above

figure, the linker combines these files into a unified

executable program, resolving the symbols as it goes along.

The linker also takes care of arranging the objects in a

program's address space. This may involve relocating code

that assumes a specific base address to another base. Since a

Paper ID: SUB151262 815

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 2, February 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 2

compiler seldom knows where an object will reside, it often

assumes a fixed base location (for example, zero). Relocating

machine code may involve re-targeting of absolute jumps,

loads and stores which we will try to focus on next part. We

prefer dynamic rather than static linking of such object files

.A loader output directly to memory is called the loader,

though loading is typically considered a separate process.

Both static as well as dynamic loading can be used under

such circumstances.

Paper ID: SUB151262 816

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 2, February 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The plug-in instrumentation helps to monitor or measure the

level of a product's performance, to diagnose bugs, add new

features at runtime and to write trace information

[8].Instrumentation are mainly of two type (source code &

binary instrumentation).We choose in this paper dynamic

binary instrumentation [9, 10, 11] for obvious reason because

they are useful in behaviour analysis of studied system in

those situations where source code might not be available.

Every DBI framework has a number of important

characteristics like ease of tool-writing, robustness,

instrumentation capabilities, and performance. There are

several advantages of such dynamic binary instrumentation

which we are listing below:-

a. No need to recompile and re-link

b. Able to discover code at runtime

c. Able to handle dynamically generated code

d. Can attach to running process

e. Actual behavior of the Program being instrumented remain

unchanged

f. Can able to insert, modify features at runtime in system

being instrumented

6. Empirical/Experimental Approach

As discussed above, our main aim in this paper is to add new

logic modules through runtime plug-in. This shall be a part of

legacy software modernization and can be done effectively

by addition separate program at runtime to our legacy

program by instrumentation. We have taken a demo example

of the Electric supply corporation‟s information system of

any city (Ref.Fig.2). In those electricity board legacy system,

provision for adding new business rules(like customer

cognitive behavioural aspects, automated monthly bill

generation and dispatch to customers via emails or sms,

enterprise promotion offers)are not very easy as the software

evolves over time and integrate new business logics with

existing logics are also very difficult. Hence, we propose a

binary instrumentation techniques at low level through which

original electricity program and instrumentation program

(which contains new rules implementation details and bill

automation) can be integrate together at execution time

without disturbing company‟s operational tasks.(Ref.Fig.3)

Step 1: The original legacy software program called

“electricity.c” and our proposed instrumentation program

called “instru.c” are separately assembled first to get

assembly files “electricity.s” and instru.s” filed obtained.

Step 2: In this step the assembled file “electricity.s” and

“instru.s” are complied separately using gcc complier from

window 7 to get the object file “ electricity.o” and “instru.o”.

Step 3: In this phase both the output files “electricity.o” and

“instru.o” of step 2 are commonplace to combine together as

a single object file “electricity_instru.o” using Linker. The

compiler produces an intermediary form called object code.

Object code is often the same as or similar to a computer's

machine language. Object code is a portion of machine code

that hasn't yet been linked into a complete program. It's the

machine code for one particular library or module that will

make up the completed product. It may also contain

placeholders or offsets not found in the machine code of a

completed program that the linker will use to connect

everything together.

Step 4: This is the last phase of our prototype where step 3

output file is converted into executable file

“electricity_instru.exe” which runtime will integrate the

existing business logic of electricity Supply Corporation with

the newly implemented logic using plug-in. Major

consideration:

 As C is not binary standardized language hence for

different compiler or for different versions or settings on

the same compiler , the DLL will be generated differently

and may cause crashes with the application it is linked to.

 It should be noted that combining multiple object files

together as a single object file is not a easier task When

linking libraries must to be ordered and can't handle cyclic

dependencies.

 Instrumentation itself has certain issues which needed to be

thoroughly analyzed before actual real-life application.

7. Result & Discussion

As mentioned earlier, we takes two separate programs

“electricity.c” and “instru.c” which are assuming as an

original electricity billing program and instrumentation

program to add new business modules respectively. We

separately assembled and compiled both of these file using

gcc for windows. Finally, we attempt to combined both the

object files “electricity.o” and “instru.o” as a single shared

object file called “electricity_instru.o” using the steps

mentioned above. For simplicity, we kept only one customize

function in “instru.c” file called void dispatch_bill(int

customerid) function. This function takes the customerid as

parameter and dispatch bill to the mobile no. that customer

will entered at runtime. The final snapshot of the output is

given in Fig.4 with arbitrary inputs.

8. Conclusion & Future Work

This dynamic approach is actually an attempt towards reverse

engineering and provides an idea of binary instrumentation

implementations. The final module “electricity_instru.exe”

may be able to integrate both the features of differently

object files one of which i.e. the actual legacy program of our

case study and another program contains the newly required

business criteria‟s which organization demands to integrate

with their existing

Paper ID: SUB151262 817

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 2, February 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 3

Figure 4

information system without disturbing routine business

operations. However, there are many issues arise with such

Plug-in [14] approach we mentioned which need to more

effectively answered in recent future before such

instrumentations may be implemented in real life situation for

legacy modernization.

References

[1] O. Vasilecas, “Ensuring Consistency of Information

Systems Rules Models”, Proceedings of the

International Conference on Computer Systems and

Technologies and Workshop for PhD Students in

Computing, Rousse, Bulgaria, June 18-19, 2009 .

[2] A. Charfi, “Hybrid Web Service Composition: Business

Processes Meet Business Rules”. Proceedings of the

Paper ID: SUB151262 818

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438

Volume 4 Issue 2, February 2015

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

2nd international conference on Service oriented

computing, ACM, New York, USA 2004, pp 30-38.

[3] N. Zsifkov, “Business Rules Domains and Business

Rules Modelling”. Proceedings of the International

Symposium on Information and Communication

Technologies, Las Vegas, Nevada, USA, June 16-18,

2004, pp 172 – 177.

[4] E. Putrycz and A. W. Kark, “Connecting legacy code,

business rules and documentation” , Proceedings of the

International Symposium, RuleML 2008, Orlando, FL,

USA, October 30-31, 2008, pp. 17–30.

[5] T. Systä, P. Yu, H. Müller, “Analyzing Java Software

by Combining Metrics & program visualization”,

Proceedings of the Conference on Software

Maintenance and Reengineering ,2000, IEEE Computer

Society Washington ,USA, pp 199.

[6] T. Kempf, K. Karuri, L.Gao “Software

Instrumentation”, Wiley Encyclopedia of Computer

Science and Engineering, published online. New Jersey,

15 September, 2008.

[7] B. R. Buck and J. Hollingsworth, “ An API for runtime

code patching” , Journal of High performance

Computing Applications, 14(4): pp 317-329, 2000.

[8] Source Code Instrumentation Overview at IBM website.

Available:

http://www-

01.ibm.com/support/knowledgecenter/SSSHUF_8.0.0/c

om.ibm.rational.testrt.doc/topics/cinstruovw.html .

[Accessed: Jan. 12, 2015].

[9] C.K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G.

Lowney, S.Wallace, V. J. Reddi, and K. Hazelwood,

“Pin: Building customized program analysis tools with

dynamic instrumentation”, Proceedings of PLDI 2005,

pages 191–200, Chicago, Illinois, USA, June 2005.

[10] J. Maebe, M. Ronsse, and K. De Bosschere, “DIOTA:

Dynamic instrumentation, optimization and

transformation of applications”, Proceedings of WBT-

2002, Charlottesville, Virginia, USA, September 2002.

[11] N. Nethercote and J. Seward, ” Valgrind: a framework

for heavyweight dynamic binary instrumentation” ,

Proceedings of the 2007 ACM SIGPLAN conference

on Programming language design and implementation

,pages -89-100,ACM New York, USA.

[12] H. Bruneliere, J. Cabot, F. Jouault, and F. Madiot,

“MoDisco: a generic and extensible framework for

model driven reverse engineering,” in : Proceedings of

the IEEE/ACM Internaltional Conference on

Automated Software Engineering, ASE 2010, pp.173-

174.ACM ,New York 2010

[13] F. Barbier, G. Deltombe, P. O., and K. Youbi, “Model

Driven Reverse Engineering: Increasing Legacy

Technology Independence” , Proceedings of Workshop

on Reverse Engineering , Feb 23 - 24,

Thiruvananthapuram, India 2011.

[14] D. Das and P. Kundu, “An Attempt to Analyze &

Resolve the Pitfalls in CRM Software through Plug-In

Instrumentation”, International Journal of Scientific

and Research Publications [ISSN 2250-3153], Vol. 2,

Issue 5, pp. 313-320, May 2012.

Author Profile

Prasenjit Kundu is currently pursuing doctoral degree program in

computer science in Utkal University, India

Dr. Bikram Kesari Ratha is currently the Reader in the

department of computer science & application in Utkal University,

India

Paper ID: SUB151262 819

