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Abstract: Error correction codes are the codes used to correct the errors occurred during the transmission of the data in the unreliable 

communication mediums. The idea behind these codes is to add redundancy bits to the data being transmitted so that even if some errors 

occur due to noise in the channel, the data can be correctly received at the destination end. Bose, Ray Chaudhuri, Hocquenghem (BCH) 

codes are one of the error correcting codes. The BCH decoder consists of four blocks namely syndrome block, chien search block and 

error correction block. This paper describes a new method for error detection in syndrome and chien search block of BCH decoder. The 

proposed syndrome block is used to reduce the number of computation by calculating the even number syndromes from the 

corresponding odd number syndromes. 
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1. Introduction 
 
BCH CODES can be found in many applications, including 
flash memory, optical transport network, and digital video 
broadcasting. For a BCH code with minimum distance dmin, 
traditional hard-decision decoding (HDD) algorithms, such 
as the Berlekamp’s algorithm, can correct t = dmin/2 errors. 
Through flipping the η least reliable bits and trying 2

η
 test 

vectors, the soft-decision Chase algorithm can correct up to t 
+ η errors. It also has better error-correcting performance 
than the generalized minimum distance (GMD) decoder and 
the soft-decision decoder in [1], which assumes that all but 
one error are located in the 2t least reliable bits. To reduce 
the complexity of the Chase BCH decoding, one-pass 
schemes have been proposed to derive the error locators for 
all test vectors in one run based on the Berlekamp’s 
algorithm [2], [3]. Comparatively, the scheme in [2] has 
lower complexity. 
 
This brief proposes a novel interpolation-based Chase BCH 

decoder. It is inspired by the interpolation-based Chase 

decoder for Reed–Solomon (RS) codes. Nevertheless, by 
making use of the binary property of BCH codes, substantial 

modifications and simplifications are developed in this brief. 
In particular, instead of employing expensive parallel Chien 

search, the selection of the interpolation output leading to 

successful decoding is achieved by simple evaluation value 
computation without any error-correcting performance or 

code rate loss. In addition, the recovery of each code word 

bit is done through testing the evaluation values of two low-
degree polynomials. From architectural analysis, the 

proposed decoder with η = 4 for an example (4200, 4096) 
BCH code has 2.3 times higher efficiency in terms of 

throughput-over-area ratio than the Chase decoder based on 

the Berlekamp’s algorithm [4], while achieving the same 
error-correcting performance. 

 
The fundamental difference between a ST Chase decoder 
and previously published decoders is that the ST Chase 
decoder concentrates on correcting bit errors instead of 
symbol errors. In this section, we will combine ideas from 

sphere decoding and binary block decoding to create a low 
complexity MIMO decoder. 

 

2. Interpolation-Based Chase BCH Decoder 
 
An (n, k) t-bit error-correcting BCH code over GF (2

p
) is a 

subfield subcode of an (n k
)
 t-symbol error-correcting RS 

code over GF (2
p
). In another word, all the (n, k) BCH code 

words form a subset of the (n, k) RS code words. n
_
 k= 2t, 

and n − k is equal to or slightly less than pt. The 
interpolation-based decoding is developed based on the 
interpretation that the code word symbols are evaluation 
values of the message polynomial. BCH codes cannot be 
encoded this way since the evaluation values of a binary 
message polynomial over finite field elements are usually 
not binary. Hence, BCH code words are considered as RS 
code words in order to apply the interpolation-based 
decoding. Applying RS systematic re-encoding to the last k

_
 

code positions, n – k points remain to be interpolated for 
each test vector. The same backward–forward interpolation 
scheme [7], [8] can be adopted to derive the interpolation 
results of all vectors in one run. Nevertheless, by making use 
of the property that r is binary in BCH decoding, substantial 
simplifications can be made on the polynomial selection and 
code recovery section.  

 
Figure 1: High level decoder design 

 

The BCH decoder has four modules as mentioned below: 

  
 Syndrome Calculator 

 Solving the key equation 

 Error Location 
 Error Correction 

 

 

Paper ID: SUB151099 101



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 

Volume 4 Issue 2, February 2015 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

3. Syndrome Calculator 
 
The syndrome calculator is the first module at the decoder 
also, the design of this module is almost same for all the 
BCH code decoder architecture. The input to this module is 
corrupted codeword. The equations for the codeword, 
received bits and the error bits are given in equations  
 
Codeword equation  
c(x) = c0 + c1x + c2x

2
 + ... + cn-1x

n-1
 Received bits equation  

r(x) = r0 + r1x + r2x
2
 + ... + rn-1x

n-1
 Error bits equation 

e(x) = e0 + e1x + e2x
2
 + ... + en-1x

n-1
 

 
Thus, the final transmitted data polynomial equation is given 
as below: 
r(x) = c(x) + e(x) 
 
The 1

st
 step at the decoding process is to store the 

transmitted data polynomial in the buffer register and then to 
calculate the syndromes sj. The important characteristic of 
the syndromes is that depends on only error location not on 
transmitted information. The equations of the syndromes are 
given as follows [4]: 
 
Define the syndromes Sj as  

n1   

S j  ri 
i
 
j
 for (1  j  2t). Since rj = cj + ej 

i0   

(j = 0, 1, ...., n-1)   

Rewrite the syndrome equation as:  

n1 n1 n1 

S j  (ci  ei ) 
i
 
j
 ci 

i
 
j
  ei 

i
 
j
 

i0 i0 i0 
By the definition of BCH codes  

n1   

ci 
i
 
j
  0 for (1  j  2t)  

i0   
Thus, 
n1  
S j  ei 

i
 
j
 i0 

 
The above equation is indicates the output of the syndrome 
calculator. From the equation it can be observed that the 
syndromes are depends on only error polynomial e(x), so if 
there is no error occurs during the transmission then all the 
generated syndromes will be zero. 

 

 
Figure 2: Architecture for Proposed Polynomial Selection 

 
Figure 3: Conventional Syndrome Calculator 

 

4. Key Equation Solver 
 
The second stage in the decoding process is to find the co-
efficient of the error location polynomial using the generated 
syndromes in the previous stage. The error location 

polynomial is given as: (x) = 0 + 1x + ... + tx
t.
 The 

relation between the syndromes and the error location 
polynomial is given as below [4]: 
t 
St i  j j  0 (i= 1, ..., t)  
j 0 
 
There are various algorithms used to solve the key equation 
solver. This project is using the Inversion less Berlekamp 
Massey algorithm to solve the key equation. Berlekamp 
Massey Algorithm.  
The steps of berlekamp Massey algorithm is given as below: 
 
(1) First step is to calculate error syndromes Sj.  
(2) Initialize the k = 0, Λ

(0)
(x) = 1, L = 0 and T(x) = x  

(3) Assign k = k + 1 and then the discrepancy 
(k)

 is 

 then calculated as follows: 

(4) If the value of 
(k)

, 2L ≥ equals 0, then go-to step 7. 

(5) Calculate the Λ
(k)

(x) = Λ
(k-1)

(x) - 
(k)

 T(x) 
(6) Set the value of L = k – L and T(x) is calculated as 

 T(x) = Λ
(k-1)

(x) / 
(k)

 
(7) Set T(x) = x.T(x).  
(8) If the value of k< 2t , then go-to step 3  
(9) Continue for i = 2t – 1 and then End.   
The decoder of this project is based on the Inversion-less 
Berkelamp algorithm (iBM) for Key Equation Calculation. 
The architecture for iBM algorithm is explained in detail in 
the next chapter. 

 

5. Error Location – Chain’s Search 
 
To calculate the error location is the next step of decoding 
process, which can be done using chain search block.  
A. Chain Search Algorithm 
The roots are calculated as follows [12] [4]: 
(1) For each power of α for ( j = 0 to n – 1), α

j
 is taken as the 

test root   
(2) Calculate the polynomial coefficients, of the  current root 

using, coefficients of the past iteration, using, Λ i
(j)

 = Λ 
i
(j-1)

 α
i
 during the j

th
 iteration   

(3) Calculate the sum of the polynomial coefficients  
 
 
 
(4) The sum is equal to   
(5) Continue to Step 1 till j = n-1  
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Figure 4: Chain’s Search architecture – Error Location 

 

6. Error Correction 
 
The output of the chain search block is called roots of 
equation. The reciprocal of the roots of equations are added 
with the corresponding location of the corrupted codeword 
received by decoder. The result of this addition is the 
original codeword that was encoded by the encoder before 
transmission. 
  

7. Simulation Results 
 
The lfsr encoder is shown below fig 

 
Figure 5: Lfsr encoder 

 
Error detected shown below 

 
Figure 6: Error detected 

 
 

Activating error shown below 

 
Figure 7: Activating Error 

 
Corrected shown below 

 
Figure 8: Corrected 

  
Syndrom cal shown below 

 
Figure 9: syndrome cal 

 

8. Conclusion 
 
This brief developed an efficient interpolation-based one 
pass Chase BCH decoder. By making use of the binary 
property of BCH codes, novel polynomial selection and 
code word recovery schemes were proposed. In particular, 
the proposed polynomial selection led to significant 
complexity reduction without sacrificing the error-correcting 
performance. Future work will be directed to further 
speeding up the interpolation based BCH decoder without 
incurring large area overhead. 
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